HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff

picture info

Electric Charge
Electric charge
Electric charge
is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. There are two types of electric charges; positive and negative (commonly carried by protons and electrons respectively). Like charges repel and unlike attract. An object with an absence of net charge is referred to as neutral. The SI derived unit of electric charge is the coulomb (C). In electrical engineering, it is also common to use the ampere-hour (Ah), and, in chemistry, it is common to use the elementary charge (e as a unit). The symbol Q often denotes charge
[...More...]

picture info

Electromagnetic Pulse
An electromagnetic pulse (EMP), also sometimes called a transient electromagnetic disturbance, is a short burst of electromagnetic energy. Such a pulse's origination may be a natural occurrence or man-made and can occur as a radiated, electric, or magnetic field or a conducted electric current, depending on the source. EMP interference is generally disruptive or damaging to electronic equipment, and at higher energy levels a powerful EMP event such as a lightning strike can damage physical objects such as buildings and aircraft structures
[...More...]

picture info

Eddy Current
Eddy currents
Eddy currents
(also called Foucault currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor due to Faraday's law of induction. Eddy currents
Eddy currents
flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. By Lenz's law, an eddy current creates a magnetic field that opposes the change in the magnetic field that created it, and thus eddy currents react back on the source of the magnetic field
[...More...]

picture info

Electrical Network
An electrical network is an interconnection of electrical components (e.g. batteries, resistors, inductors, capacitors, switches) or a model of such an interconnection, consisting of electrical elements (e.g. voltage sources, current sources, resistances, inductances, capacitances). An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Linear electrical networks, a special type consisting only of sources (voltage or current), linear lumped elements (resistors, capacitors, inductors), and linear distributed elements (transmission lines), have the property that signals are linearly superimposable. They are thus more easily analyzed, using powerful frequency domain methods such as Laplace transforms, to determine DC response, AC response, and transient response. A resistive circuit is a circuit containing only resistors and ideal current and voltage sources
[...More...]

picture info

Maxwell Stress Tensor
The Maxwell stress tensor
Maxwell stress tensor
(named after James Clerk Maxwell) is a symmetric second-order tensor used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force
Lorentz force
law. When the situation becomes more complicated, this ordinary procedure can become impossibly difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand. In the relativistic formulation of electromagnetism, the Maxwell's tensor appears as a part of the electromagnetic stress–energy tensor which is the electromagnetic component of the total stress–energy tensor
[...More...]

picture info

Polarization Density
In classical electromagnetism, polarization density (or electric polarization, or simply polarization) is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized. The electric dipole moment induced per unit volume of the dielectric material is called the electric polarization of the dielectric.[1][2] Polarization density
Polarization density
also describes how a material responds to an applied electric field as well as the way the material changes the electric field, and can be used to calculate the forces that result from those interactions. It can be compared to magnetization, which is the measure of the corresponding response of a material to a magnetic field in magnetism
[...More...]

picture info

Electromagnetic Radiation
In physics, electromagnetic radiation (EM radiation or EMR) refers to the waves (or their quanta, photons) of the electromagnetic field, propagating (radiating) through space-time, carrying electromagnetic radiant energy.[1] It includes radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays.[2] Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields that propagate at the speed of light through a vacuum. The oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. The wavefront of electromagnetic waves emitted from a point source (such as a light bulb) is a sphere. The position of an electromagnetic wave within the electromagnetic spectrum could be characterized by either its frequency of oscillation or its wavelength
[...More...]

picture info

Lenz's Law
Lenz's law
Lenz's law
(pronounced /ˈlɛnts/), named after the physicist Heinrich Friedrich Emil Lenz who formulated it in 1834,[1] states that the direction of current induced in a conductor by a changing magnetic field due to induction is such that it creates a magnetic field that opposes the change that produced it. Lenz's law
[...More...]

picture info

Faraday's Law Of Induction
Faraday's law of induction
Faraday's law of induction
is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (EMF)—a phenomenon called electromagnetic induction. It is the fundamental operating principle of transformers, inductors, and many types of electrical motors, generators and solenoids.[1][2] The Maxwell–Faraday equation is a generalization of Faraday's law, and is listed as one of Maxwell's equations.Contents1 History 2 Faraday's law2.1 Qualitative statement 2.2 Quantitative 2.3 Maxwell–Faraday equation3 Proof of Faraday's law 4 EMF for non-thin-wire circuits 5 Faraday's law and relativity5.1 Two phenomena 5.2 Einstein's view6 See also 7 References 8 Further reading 9 External linksHistory[edit]A diagram of Faraday's iron ring apparatus
[...More...]

picture info

Electromagnetic Induction
Electromagnetic or magnetic induction is the production of an electromotive force (i.e., voltage) across an electrical conductor in a changing magnetic field. Michael Faraday
Michael Faraday
is generally credited with the discovery of induction in 1831, and James Clerk Maxwell
James Clerk Maxwell
mathematically described it as Faraday's law of induction. Lenz's law
Lenz's law
describes the direction of the induced field
[...More...]

picture info

London Equations
The London equations, developed by brothers Fritz and Heinz London in 1935,[1] relate current to electromagnetic fields in and around a superconductor
[...More...]

picture info

Mathematical Descriptions Of The Electromagnetic Field
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature
[...More...]

picture info

Poynting Vector
In physics, the Poynting vector
Poynting vector
represents the directional energy flux (the energy transfer per unit area per unit time) of an electromagnetic field. The SI unit of the Poynting vector
Poynting vector
is the watt per square metre (W/m2)
[...More...]

picture info

Ampère's Circuital Law
In classical electromagnetism, Ampère's circuital law
Ampère's circuital law
(not to be confused with Ampère's force law
Ampère's force law
that André-Marie Ampère
André-Marie Ampère
discovered in 1823[1]) relates the integrated magnetic field around a closed loop to the electric current passing through the loop
[...More...]

picture info

Electrical Conductor
In physics and electrical engineering, a conductor is an object or type of material that allows the flow of an electrical current in one or more directions. Materials made of metal are common electrical conductors. Electrical current
Electrical current
is generated by the flow of negatively charged electrons, positively charged holes, and positive or negative ions in some cases. In order for current to flow, it is not necessary for one charged particle to travel from the machine producing the current to that consuming it. Instead, the charged particle simply needs to nudge its neighbor a finite amount who will nudge its neighbor and on and on until a particle is nudged into the consumer, thus powering the machine. Essentially what is occurring here is a long chain of momentum transfer between mobile charge carriers; the Drude model
Drude model
of conduction describes this process more rigorously
[...More...]

picture info

Ohm's Law
Ohm's law
Ohm's law
states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance,[1] one arrives at the usual mathematical equation that describes this relationship:[2] I = V R , displaystyle I= frac V R , where I is the current through the conductor in units of amperes, V is the voltage measured across the conductor in units of volts, and R is the resistance of the conductor in units of ohms. More specifically, Ohm's law
Ohm's law
states that the R in this relation is constant, independent of the current.[3] The law was named after the German physicist Georg Ohm, who, in a treatise published in 1827, described measurements of applied voltage and current through simple electrical circuits containing various lengths of wire
[...More...]

.