HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff

picture info

CO2
Carbon
Carbon
dioxide (chemical formula CO2) is a colorless gas with a density about 60% higher than that of dry air. Carbon
Carbon
dioxide consists of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere
Earth's atmosphere
as a trace gas. The current concentration is about 0.04% (405 ppm) by volume, having risen from pre-industrial levels of 280 ppm. Natural sources include volcanoes, hot springs and geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas
[...More...]

CO2 (other)
Disambiguation usually refers to word-sense disambiguation, the process of identifying which meaning of a word is used in context. Disambiguation may also refer to:Sentence boundary disambiguation, the problem in natural language processing of deciding where sentences begin and end Syntactic disambiguation, the problem of resolving syntactic ambiguity Memory disambiguation, a set of microprocessor execution techniquesMusic[edit]Ø (Disambiguation), a 2010 album by Underoath Disambiguation (Pandelis Karayorgis album), a 2002 album by Pandelis Karayorgis and Mat ManeriSee also[edit]Ambiguity, an attribute of any concept, idea, statement or claim whose meaning, intention or interpretation cannot be definitively resolvedThis disambiguation page lists articles associated with the title Disambiguation. If an internal link led you here, you may wish to change the link to point directly to the inten
[...More...]

Standard Molar Entropy
In chemistry, the standard molar entropy is the entropy content of one mole of substance under a standard state (not STP). The standard molar entropy is usually given the symbol S°, and has units of joules per mole kelvin (J mol−1 K−1). Unlike standard enthalpies of formation, the value of S° is absolute. That is, an element in its standard state has a definite, nonzero value of S at room temperature. The entropy of a pure crystalline structure can be 0 J mol−1 K−1 only at 0 K, according to the third law of thermodynamics. However, this presupposes that the material forms a 'perfect crystal' without any frozen in entropy (defects, dislocations), which is never completely true because crystals always grow at a finite temperature
[...More...]

picture info

Vapor Pressure
Vapor
Vapor
pressure or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's evaporation rate. It relates to the tendency of particles to escape from the liquid (or a solid). A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure. The vapor pressure of any substance increases non-linearly with temperature according to the Clausius–Clapeyron relation
[...More...]

Magnetic Susceptibility
In electromagnetism, the magnetic susceptibility (Latin: susceptibilis, "receptive"; denoted χ) is one measure of the magnetic properties of a material. The susceptibility indicates whether a material is attracted into or repelled out of a magnetic field, which in turn has implications for practical applications. Quantitative measures of the magnetic susceptibility also provide insights into the structure of materials, providing insight into bonding and energy levels. If the magnetic susceptibility is greater than zero, the substance is said to be "paramagnetic"; the magnetization of the substance is higher than that of empty space. If the magnetic susceptibility is less than zero, the substance is "diamagnetic"; it tends to exclude a magnetic field from its interior
[...More...]

picture info

Refractive Index
In optics, the refractive index or index of refraction of a material is a dimensionless number that describes how light propagates through that medium. It is defined as n = c v , displaystyle n= frac c v , where c is the speed of light in vacuum and v is the phase velocity of light in the medium. For example, the refractive index of water is 1.333, meaning that light travels 1.333 times faster in vacuum than in the water. Refraction
Refraction
of a light rayThe refractive index determines how much the path of light is bent, or refracted, when entering a material. This is the first documented use of refractive indices and is described by Snell's law
Snell's law
of refraction, n1 sinθ1 = n2 sinθ2, where θ1 and θ2 are the angles of incidence and refraction, respectively, of a ray crossing the interface between two media with refractive indices n1 and n2
[...More...]

picture info

Viscosity
The viscosity of a fluid is a measure of its resistance to gradual deformation by shear stress or tensile stress.[1] For liquids, it corresponds to the informal concept of "thickness"; for example, honey has higher viscosity than water.[2] Viscosity
Viscosity
is a property of the fluid which opposes the relative motion between the two surfaces of the fluid that are moving at different velocities. In simple terms, viscosity means friction between the molecules of fluid. When the fluid is forced through a tube, the particles which compose the fluid generally move more quickly near the tube's axis and more slowly near its walls; therefore some stress (such as a pressure difference between the two ends of the tube) is needed to overcome the friction between particle layers to keep the fluid moving
[...More...]

Poise (unit)
The poise (symbol P; /pɔɪz, pwɑːz/) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units.[1] It is named after Jean Léonard Marie Poiseuille (see Hagen– Poiseuille equation). 1   P = 0.1   kg ⋅ m − 1 ⋅ s − 1 = 1   g ⋅ cm − 1 ⋅ s − 1 = 1   dyne &
[...More...]

picture info

Crystal Structure
In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material.[3] Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter. The smallest group of particles in the material that constitutes the repeating pattern is the unit cell of the structure. The unit cell completely defines the symmetry and structure of the entire crystal lattice, which is built up by repetitive translation of the unit cell along its principal axes. The repeating patterns are said to be located at the points of the Bravais lattice. The lengths of the principal axes, or edges, of the unit cell and the angles between them are the lattice constants, also called lattice parameters
[...More...]

picture info

Molecular Geometry
Molecular geometry
Molecular geometry
is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that determine the position of each atom. Molecular geometry
Molecular geometry
influences several properties of a substance including its reactivity, polarity, phase of matter, color, magnetism and biological activity.[1][2][3] The angles between bonds that an atom forms depend only weakly on the rest of molecule, i.e
[...More...]

picture info

Linear (chemistry)
In chemistry, the linear molecular geometry describes the geometry around a central atom bonded to two other atoms (or ligands) placed at a bond-angle of 180°. Linear organic molecules, such as acetylene (HC≡CH), are often described by invoking sp orbital hybridization for their carbon centers. According to the VSEPR model, linear geometry occurs at central atoms with two bonded atoms and zero or three lone pairs (AX2 or AX2E3) in the AXE notation. Neutral AX2 molecules with linear geometry include beryllium fluoride (F−Be−F) with two single bonds,[1] carbon dioxide (O=C=O) with two double bonds, hydrogen cyanide (H−C≡N) with one single and one triple bond. The most important linear molecule with more than three atoms is acetylene (H−C≡C−H), in which each of its carbon atoms is considered to be a central atom with a single bond to one hydrogen and a triple bond to the other carbon atom
[...More...]

picture info

Specific Heat Capacity
Heat
Heat
capacity or thermal capacity is a measurable physical quantity equal to the ratio of the heat added to (or removed from) an object to the resulting temperature change.[1] The unit of heat capacity is joule per kelvin J K displaystyle mathrm tfrac J K , or kilogram metre squared per kelvin second squared k g ⋅ m 2 K ⋅ s 2 displaystyle mathrm tfrac kgcdot m^ 2 Kcdot s^ 2 in the International System of Units
International System of Units
(SI). The dimensional form is L2MT−2Θ−1
[...More...]

picture info

Standard Enthalpy Change Of Formation
The standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states. The standard pressure value po = 105 Pa (= 100 kPa = 1 bar) is recommended by IUPAC, although prior to 1982 the value 1.00 atm (101.325 kPa) was used.[1] There is no standard temperature. Its symbol is ΔfH⊖. The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K)
[...More...]

picture info

Sublimation (phase Transition)
Sublimation is the phase transition of a substance directly from the solid to the gas phase without passing through the intermediate liquid phase.[1] Sublimation is an endothermic process that occurs at temperatures and pressures below a substance's triple point in its phase diagram, which corresponds to the lowest pressure at which the substance can exist as a liquid. The reverse process of sublimation is deposition or desublimation, in which a substance passes directly from a gas to a solid phase.[2] Sublimation has also been used as a generic term to describe a solid-to-gas transition (sublimation) followed by a gas-to-solid transition (deposition).[3] At normal pressures, most chemical compounds and elements possess three different states at different temperatures. In these cases, the transition from the solid to the gaseous state requires an intermediate liquid state. The pressure referred to is the partial pressure of the substance, not the total (e.g
[...More...]

Anatomical Therapeutic Chemical Classification System
The Anatomical Therapeutic
Therapeutic
Chemical (ATC) Classification System
System
is used for the classification of active ingredients of drugs according to the organ or system on which they act and their therapeutic, pharmacological and chemical properties. It is controlled by the World Health Organization Collaborating Centre for Drug
Drug
Statistics Methodology (WHOCC), and was first published in 1976.[1] This pharmaceutical coding system divides drugs into different groups according to the organ or system on which they act or their therapeutic and chemical characteristics. Each bottom-level ATC code stands for a pharmaceutically used substance, or a combination of substances, in a single indication (or use)
[...More...]

ATC Code V03
ATC code V03 All other therapeutic products is a therapeutic subgroup of the Anatomical Therapeutic Chemical Classification System, a system of alphanumeric codes developed by the WHO for the classification of drugs and other medical products. Subgroup V03 is part of the anatomical group V Various.[1] Codes for veterinary use (ATCvet codes) can be created by placing the letter Q in front of the human ATC code: for example, QV03.[2] ATCvet codes without corresponding human ATC codes are cited with the leading Q in the following list. National issues of the ATC classification may include additional codes not present in this list, which follows the WHO version
[...More...]

.