HOME TheInfoList
Providing Lists of Related Topics to Help You Find Great Stuff







Appell's Equation Of Motion
In classical mechanics, Appell's equation of motion (aka Gibbs-Appell equation of motion) is an alternative general formulation of classical mechanics described by Paul Émile Appell in 1900 and Josiah Willard Gibbs in 1879


picture info

Statistical Mechanics
Statistical mechanics is a branch of theoretical physics that uses probability theory to study the average behaviour of a mechanical system whose exact state is uncertain. Statistical mechanics is commonly used to explain the thermodynamic behaviour of large systems. This branch of statistical mechanics, which treats and extends classical thermodynamics, is known as statistical thermodynamics or equilibrium statistical mechanics. Microscopic mechanical laws do not contain concepts such as temperature, heat, or entropy; however, statistical mechanics shows how these concepts arise from the natural uncertainty about the state of a system when that system is prepared in practice
[...More Info...]      
[...Related Items...]



picture info

Classical Mechanics
Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars and galaxies. If the present state of an object is known it is possible to predict by the laws of classical mechanics how it will move in the future (determinism) and how it has moved in the past (reversibility) The earliest development of classical mechanics is often referred to as Newtonian mechanics. It consists of the physical concepts employed by and the mathematical methods invented by Isaac Newton and Gottfried Wilhelm Leibniz and others in the 17th century to describe the motion of bodies under the influence of a system of forces. Later, more abstract methods were developed, leading to the reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian mechanics
[...More Info...]      
[...Related Items...]



picture info

Routhian Mechanics
In analytical mechanics, a branch of theoretical physics, Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. The Routhian, like the Hamiltonian, can be obtained from a Legendre transform of the Lagrangian, and has a similar mathematical form to the Hamiltonian, but is not exactly the same. The difference between the Lagrangian, Hamiltonian, and Routhian functions are their variables
[...More Info...]      
[...Related Items...]



picture info

Momentum
In Newtonian mechanics, linear momentum, translational momentum, or simply momentum (pl. momenta) is the product of the mass and velocity of an object. It can be more generally stated as a measure of how hard it is to stop a moving object. It is a three-dimensional vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is the velocity (also a vector), then the momentum is
In SI units, it is measured in kilogram meters per second (kgm/s)
[...More Info...]      
[...Related Items...]



picture info

Space
Space is the boundless three-dimensional extent in which objects and events have relative position and direction. Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum known as spacetime. The concept of space is considered to be of fundamental importance to an understanding of the physical universe. However, disagreement continues between philosophers over whether it is itself an entity, a relationship between entities, or part of a conceptual framework. Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, or Socrates in his reflections on what the Greeks called khôra (i.e. "space"), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e
[...More Info...]      
[...Related Items...]



picture info

Speed
In everyday use and in kinematics, the speed of an object is the magnitude of its velocity (the rate of change of its position); it is thus a scalar quantity. The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second, but the most common unit of speed in everyday usage is the kilometre per hour or, in the US and the UK, miles per hour
[...More Info...]      
[...Related Items...]



picture info

Torque
Torque, moment, or moment of force is rotational force. Just as a linear force is a push or a pull, a torque can be thought of as a twist to an object. In three dimensions, the torque is a pseudovector; for point particles, it is given by the cross product of the position vector (distance vector) and the force vector. The symbol for torque is typically , the lowercase Greek letter tau. When it is called moment of force, it is commonly denoted by M. The magnitude of torque of a rigid body depends on three quantities: the force applied, the lever arm vector connecting the origin to the point of force application, and the angle between the force and lever arm vectors
[...More Info...]      
[...Related Items...]



picture info

Velocity
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of its speed and direction of motion (e.g. 60 km/h to the north). Velocity is an important concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called "speed", being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s) or as the SI base unit of (m⋅s−1--->). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector
[...More Info...]      
[...Related Items...]



picture info

Virtual Work
Virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement will be different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action
[...More Info...]      
[...Related Items...]



picture info

Newton's Laws Of Motion
Newton's laws of motion are three physical laws that, together, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. More precisely, the first law defines the force qualitatively, the second law offers a quantitative measure of the force, and the third asserts that a single isolated force doesn't exist. These three laws have been expressed in several ways, over nearly three centuries, and can be summarised as follows:
First law: In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
Second law: In an inertial reference frame, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma
[...More Info...]      
[...Related Items...]



picture info

Lagrangian Mechanics
Lagrangian mechanics is a reformulation of classical mechanics, introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788. In Lagrangian mechanics, the trajectory of a system of particles is derived by solving the Lagrange equations in one of two forms, either the Lagrange equations of the first kind, which treat constraints explicitly as extra equations, often using Lagrange multipliers; or the Lagrange equations of the second kind, which incorporate the constraints directly by judicious choice of generalized coordinates. In each case, a mathematical function called the Lagrangian is a function of the generalized coordinates, their time derivatives, and time, and contains the information about the dynamics of the system. No new views on physics are necessarily introduced in applying Lagrangian mechanics compared to Newtonian mechanics
[...More Info...]      
[...Related Items...]



Hamiltonian Mechanics
Hamiltonian mechanics is a theory developed as a reformulation of classical mechanics and predicts the same outcomes as non-Hamiltonian classical mechanics. It uses a different mathematical formalism, providing a more abstract understanding of the theory
[...More Info...]      
[...Related Items...]



Hamilton–Jacobi Equation
In mathematics, the Hamilton–Jacobi equation (HJE) is a necessary condition describing extremal geometry in generalizations of problems from the calculus of variations, and is a special case of the Hamilton–Jacobi–Bellman equation. It is named for William Rowan Hamilton and Carl Gustav Jacob Jacobi. In physics, the Hamilton-Jacobi equation is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely. The HJE is also the only formulation of mechanics in which the motion of a particle can be represented as a wave
[...More Info...]      
[...Related Items...]



picture info

Work (physics)
In physics, a force is said to do work if, when acting, there is a displacement of the point of application in the direction of the force. For example, when a ball is held above the ground and then dropped, the work done on the ball as it falls is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement). Work transfers energy from one place to another or one form to another. According to Jammer, the term work was introduced in 1826 by the French mathematician Gaspard-Gustave Coriolis as "weight lifted through a height", which is based on the use of early steam engines to lift buckets of water out of flooded ore mines
[...More Info...]      
[...Related Items...]



Udwadia–Kalaba Equation
In theoretical physics, the Udwadia–Kalaba equation is a method for deriving the equations of motion of a constrained mechanical system. This equation was discovered by Firdaus E. Udwadia and Robert E. Kalaba in 1992. The fundamental equation is the simplest and most comprehensive equation so far discovered for writing down the equations of motion of a constrained mechanical system. It makes a convenient distinction between externally applied forces and the internal forces of constraint, similar to the use of constraints in Lagrangian mechanics, but without the use of Lagrange multipliers. The Udwadia–Kalaba equation applies to a wide class of constraints, both holonomic constraints and nonholonomic ones, as long as they are linear with respect to the accelerations
[...More Info...]      
[...Related Items...]