HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff

picture info

Ammonia
Trihydrogen nitride Nitrogen
Nitrogen
trihydrideIdentifiersCAS Number7664-41-7 Y3D model (JSmol)Interactive image3DMet B00004Beilstein Reference3587154ChEBICHEBI:16134 YChEMBLChEMBL1160819 YChemSpider217 YECHA InfoCard 100.028.760EC Number 231-635-3Gmelin Reference79KEGGD02916 YMeSH Ammonia
[...More...]

picture info

Flash Point
The flash point of a volatile material is the lowest temperature at which vapours of the material will ignite, when given an ignition source. The flash point may sometimes be confused with the autoignition temperature, which is the temperature at which the vapor ignites spontaneously without an ignition source. The fire point is the lowest temperature at which vapors of the material will keep burning after being ignited and the ignition source removed
[...More...]

picture info

Vapor Pressure
Vapor
Vapor
pressure or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's evaporation rate. It relates to the tendency of particles to escape from the liquid (or a solid). A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure. The vapor pressure of any substance increases non-linearly with temperature according to the Clausius–Clapeyron relation
[...More...]

picture info

Density
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ (the lower case Greek letter rho), although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:[1] ρ = m V displaystyle rho = frac m V where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume,[2] although this is scientifically inaccurate – this quantity is more specifically called specific weight. For a pure substance the density has the same numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging
[...More...]

picture info

Boiling Point
The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the pressure surrounding the liquid[1][2] and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding environmental pressure. A liquid in a partial vacuum has a lower boiling point than when that liquid is at atmospheric pressure. A liquid at high pressure has a higher boiling point than when that liquid is at atmospheric pressure. For a given pressure, different liquids boil at different temperatures
[...More...]

picture info

Aqueous Solution
An aqueous solution is a solution in which the solvent is water. It is usually shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be represented as Na+(aq) + Cl−(aq). The word aqueous means pertaining to, related to, similar to, or dissolved in, water. As water is an excellent solvent and is also naturally abundant, it is a ubiquitous solvent in chemistry. Substances that are hydrophobic ('water-fearing') often do not dissolve well in water, whereas those that are hydrophilic ('water-friendly') do. An example of a hydrophilic substance is sodium chloride. Acids and bases are aqueous solutions, as part of their Arrhenius definitions. The ability of a substance to dissolve in water is determined by whether the substance can match or exceed the strong attractive forces that water molecules generate between themselves
[...More...]

picture info

Solubility
Solubility
Solubility
is the property of a solid, liquid or gaseous chemical substance called solute to dissolve in a solid, liquid or gaseous solvent. The solubility of a substance fundamentally depends on the physical and chemical properties of the solute and solvent as well as on temperature, pressure and presence of other chemicals (including changes to the pH) of the solution. The extent of the solubility of a substance in a specific solvent is measured as the saturation concentration, where adding more solute does not increase the concentration of the solution and begins to precipitate the excess amount of solute. Insolubility is the inability to dissolve in a solid, liquid or gaseous solvent. Most often, the solvent is a liquid, which can be a pure substance or a mixture
[...More...]

picture info

Chloroform
Chloroform, or trichloromethane, is an organic compound with formula CHCl3. It is a colorless, sweet-smelling, dense liquid that is produced on a large scale as a precursor to PTFE. It is also a precursor to various refrigerants.[4] It is one of the four chloromethanes and a trihalomethane.Contents1 Structure 2 Natural occurrence 3 History 4 Production4.1 Deuterochloroform 4.2 Inadvertent formation of chloroform5 Uses5.1 Solvent 5.2 Reagent 5.3 Anesthetic 5.4 Criminal use6 Safety6.1 Exposure 6.2 Pharmacology 6.3 Conversion to phosgene 6.4 Regulation7 References 8 External linksStructure[edit] The molecule adopts tetrahedral molecular geometry with C3v symmetry. Natural occurrence[edit] The total global flux of chloroform through the environment is approximately 7005660000000000000♠660000 tonnes per year,[5] and about 90% of emissions are natural in origin
[...More...]

picture info

Ether
Ethers (/ˈiːθər/) are a class of organic compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula R–O–R′, where R and R′ represent the alkyl or aryl groups. Ethers can again be classified into two varieties: if the alkyl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers.[1] A typical example of the first group is the solvent and anesthetic diethyl ether, commonly referred to simply as "ether" (CH3–CH2–O–CH2–CH3)
[...More...]

Magnetic Susceptibility
In electromagnetism, the magnetic susceptibility (Latin: susceptibilis, "receptive"; denoted χ) is one measure of the magnetic properties of a material. The susceptibility indicates whether a material is attracted into or repelled out of a magnetic field, which in turn has implications for practical applications. Quantitative measures of the magnetic susceptibility also provide insights into the structure of materials, providing insight into bonding and energy levels. If the magnetic susceptibility is greater than zero, the substance is said to be "paramagnetic"; the magnetization of the substance is higher than that of empty space. If the magnetic susceptibility is less than zero, the substance is "diamagnetic"; it tends to exclude a magnetic field from its interior
[...More...]

picture info

Simplified Molecular-input Line-entry System
The simplified molecular-input line-entry system (SMILES) is a specification in form of a line notation for describing the structure of chemical species using short ASCII
ASCII
strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules. The original SMILES specification was initiated in the 1980s. It has since been modified and extended. In 2007, an open standard called OpenSMILES was developed in the open-source chemistry community
[...More...]

picture info

Refractive Index
In optics, the refractive index or index of refraction of a material is a dimensionless number that describes how light propagates through that medium. It is defined as n = c v , displaystyle n= frac c v , where c is the speed of light in vacuum and v is the phase velocity of light in the medium. For example, the refractive index of water is 1.333, meaning that light travels 1.333 times faster in vacuum than in the water. Refraction
Refraction
of a light rayThe refractive index determines how much the path of light is bent, or refracted, when entering a material. This is the first documented use of refractive indices and is described by Snell's law
Snell's law
of refraction, n1 sinθ1 = n2 sinθ2, where θ1 and θ2 are the angles of incidence and refraction, respectively, of a ray crossing the interface between two media with refractive indices n1 and n2
[...More...]

Debye
The debye (symbol: D) (/dɛˈbaɪ/;[1] Dutch: [dəˈbɛiə]) is a CGS unit[2] (a non-SI metric unit) of electric dipole moment[note 1] named in honour of the physicist Peter J. W. Debye. It is defined as 1×10−18 statcoulomb-centimetre.[note 2] Historically the debye was defined as the dipole moment resulting from two charges of opposite sign but an equal magnitude of 10−10 statcoulomb[note 3] (generally called e.s.u. (electrostatic unit) in older literature), which were separated by 1 ångström.[note 4] This gave a convenient unit for molecular dipole moments.1 D  = 10−18 statC·cm= 10−10 esu·Å[note 2]= ​1⁄299,792,458×10−21 C·m[note 5]≈ 3.33564×10−30 C·m≈ 1.10048498×1023 qPlP≈ 0.393430307 ea0[3]≈ 0.20819434 eÅ≈ 0.020819434 e·nmTypical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Symmetric homoatomic species, e.g
[...More...]

Standard Molar Entropy
In chemistry, the standard molar entropy is the entropy content of one mole of substance under a standard state (not STP). The standard molar entropy is usually given the symbol S°, and has units of joules per mole kelvin (J mol−1 K−1). Unlike standard enthalpies of formation, the value of S° is absolute. That is, an element in its standard state has a definite, nonzero value of S at room temperature. The entropy of a pure crystalline structure can be 0 J mol−1 K−1 only at 0 K, according to the third law of thermodynamics. However, this presupposes that the material forms a 'perfect crystal' without any frozen in entropy (defects, dislocations), which is never completely true because crystals always grow at a finite temperature
[...More...]

picture info

Safety Data Sheet
A safety data sheet (SDS),[1] material safety data sheet (MSDS), or product safety data sheet (PSDS) is an important component of product stewardship, occupational safety and health, and spill-handling procedures. SDS formats can vary from source to source within a country depending on national requirements. SDSs are a widely used system for cataloging information on chemicals, chemical compounds, and chemical mixtures. SDS information may include instructions for the safe use and potential hazards associated with a particular material or product. The SDS should be available for reference in the area where the chemicals are being stored or in use. There is also a duty to properly label substances on the basis of physico-chemical, health or environmental risk
[...More...]

picture info

GHS Hazard Pictograms
Hazard pictograms form part of the international Globally Harmonized System of Classification and Labelling of Chemicals (GHS). Two sets of pictograms are included within the GHS: one for the labelling of containers and for workplace hazard warnings, and a second for use during the transport of dangerous goods. Either one or the other is chosen, depending on the target audience, but the two are not used together.[1] The two sets of pictograms use the same symbols for the same hazards, although certain symbols are not required for transport pictograms
[...More...]