Activating Protein 2
   HOME
*





Activating Protein 2
Activating Protein 2 (AP-2) is a family of closely related transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The f ...s which plays a critical role in regulating gene expression during early development. References External links * Gene expression Transcription factors {{gene-20-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TFAP2A
Transcription factor AP-2 alpha (Activating enhancer binding Protein 2 alpha), also known as TFAP2A, is a protein that in humans is encoded by the ''TFAP2A'' gene. Function Transcription factor AP-2 alpha is a 52-kD sequence-specific DNA-binding protein that enhances transcription of specific genes by binding to a GC-rich DNA sequence first identified in the cis-regulatory region of SV40 virus DNA and in cis-regulatory regions of a variety of cellular genes. The TFAP2-alpha gene was isolated and found to be retinoic acid-inducible in NT2 teratocarcinoma cells suggesting a potential role for AP-2 alpha in cellular differentiation. During embryonic development, AP-2 alpha is expressed in neural crest cells migrating from the cranial neural folds during neural tube closure, and is also expressed in ectoderm, parts of the central nervous system, limb buds, and mesonephric system suggesting that AP-2 alpha plays an important role in the determination and development of these tis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transcription Factor
In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization ( body plan) during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are up to 1600 TFs in the human genome. Transcription factors are members of the proteome as well as regulome. TFs work alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor) the recruitment of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gene Expression
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. Gene expression is summarized in the central dogma of molecular biology first formulated by Francis Crick in 1958, further developed in his 1970 article, and expanded by the subsequent discoveries of reverse transcription and RNA replication. The process of gene expression is used by all known life— eukaryotes (including multicellular organisms), prokaryotes (bacteria and archaea), and utilized by viruses—to generate the macromolecular machinery for life. In genetics, gene expression is the most fundamental level at which the genotype gives rise to the phenot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]