HOME TheInfoList.com
Providing Lists of Related Topics to Help You Find Great Stuff
[::MainTopicLength::#1500] [::ListTopicLength::#1000] [::ListLength::#15] [::ListAdRepeat::#3]

Acid Hydrolysis
In organic chemistry, acid hydrolysis is a process in which a protic acid is used to catalyze the cleavage of a chemical bond via a nucleophilic substitution reaction, with the addition of the elements of water (H2O). For example, in the conversion of cellulose or starch to glucose. For the case of esters and amides, it can be defined as an acid catalyzed nucleophilic acyl substitution reaction. The term is also applied to certain nucleophilic addition reactions, such as in the acid catalyzed hydrolysis of nitriles to amides
[...More...]

"Acid Hydrolysis" on:
Wikipedia
Google
Yahoo

picture info

Organic Chemistry
Organic chemistry
Organic chemistry
is a chemistry subdiscipline involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.[1] Study of structure includes many physical and chemical methods to determine the chemical composition and the chemical constitution of organic compounds and materials. Study of properties includes both physical properties and chemical properties, and uses similar methods as well as methods to evaluate chemical reactivity, with the aim to understand the behavior of the organic matter in its pure form (when possible), but also in solutions, mixtures, and fabricated forms
[...More...]

"Organic Chemistry" on:
Wikipedia
Google
Yahoo

Protic Acid
An acid is a molecule or ion capable of donating a hydron (proton or hydrogen ion H+), or, alternatively, capable of forming a covalent bond with an electron pair (a Lewis acid).[1] The first category of acids is the proton donors or Brønsted acids. In the special case of aqueous solutions, proton donors form the hydronium ion H3O+ and are known as Arrhenius acids. Brønsted and Lowry generalized the Arrhenius theory to include non-aqueous solvents. A Brønsted or Arrhenius acid usually contains a hydrogen atom bonded to a chemical structure that is still energetically favorable after loss of H+. Aqueous Arrhenius acids have characteristic properties which provide a practical description of an acid.[2] Acids form aqueous solutions with a sour taste, can turn blue litmus red, and react with bases and certain metals (like calcium) to form salts
[...More...]

"Protic Acid" on:
Wikipedia
Google
Yahoo

picture info

Special
Special
Special
or specials may refer to:Contents1 Music 2 Film and television 3 Other uses 4 See alsoMusic[edit] Special
Special
(album), a 1992 album by Vesta Williams "Special" (Garbage song), 1998 "Special
[...More...]

"Special" on:
Wikipedia
Google
Yahoo

picture info

Electrophilic Addition
In organic chemistry, an electrophilic addition reaction is an addition reaction where, in a chemical compound, a π bond is broken and two new σ bonds are formed. The substrate of an electrophilic addition reaction must have a double bond or triple bond.[1] The driving force for this reaction is the formation of an electrophile X+ that forms a covalent bond with an electron-rich unsaturated C=C bond. The positive charge on X is transferred to the carbon-carbon bond, forming a carbocation during the formation of the C-X bond.In step 2 of an electrophilic addition, the positively charged intermediate combines with (Y) that is electron-rich and usually an anion to form the second covalent bond. Step 2 is the same nucleophilic attack process found in an SN1 reaction
[...More...]

"Electrophilic Addition" on:
Wikipedia
Google
Yahoo

Nitriles
A nitrile is any organic compound that has a −C≡N functional group.[1] The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves
[...More...]

"Nitriles" on:
Wikipedia
Google
Yahoo

picture info

Nucleophilic Addition
In organic chemistry, a nucleophilic addition reaction is an addition reaction where a chemical compound with an electron-deficient or electrophilic double or triple bond, a π bond, reacts with electron-rich reactant, termed a nucleophile, with disappearance of the double bond and creation of two new single, or σ, bonds
[...More...]

"Nucleophilic Addition" on:
Wikipedia
Google
Yahoo

picture info

Nucleophilic Acyl Substitution
Nucleophilic acyl substitution
Nucleophilic acyl substitution
describe a class of substitution reactions involving nucleophiles and acyl compounds. In this type of reaction, a nucleophile – such as an alcohol, amine, or enolate – displaces the leaving group of an acyl derivative – such as an acid halide, anhydride, or ester
[...More...]

"Nucleophilic Acyl Substitution" on:
Wikipedia
Google
Yahoo

picture info

Amides
An amide (/ˈæmaɪd/ or /ˈæmɪd/ or /ˈeɪmaɪd/),[1][2][3] also known as an acid amide, is a compound with the functional group RnE(O)xNR′2 (R and R′ refer to H or organic groups). Most common are carboxamides (organic amides) (n = 1, E = C, x = 1), but many other important types of amides are known, including phosphoramides (n = 2, E = P, x = 1 and many related formulas) and sulfonamides (E = S, x = 2).[4] The term amide refers both to classes of compounds and to the functional group (RnE(O)xNR′2) within those compounds. Amide
Amide
can also refer to the conjugate base of ammonia (the anion H2N−) or of an organic amine (an anion R2N−)
[...More...]

"Amides" on:
Wikipedia
Google
Yahoo

picture info

Esters
In chemistry, an ester is a chemical compound derived from an acid (organic or inorganic) in which at least one –OH (hydroxyl) group is replaced by an –O–alkyl (alkoxy) group.[1] Usually, esters are derived from a carboxylic acid and an alcohol. Glycerides, which are fatty acid esters of glycerol, are important esters in biology, being one of the main classes of lipids, and making up the bulk of animal fats and vegetable oils. Esters with low molecular weight are commonly used as fragrances and found in essential oils and pheromones. Phosphoesters form the backbone of DNA
DNA
molecules
[...More...]

"Esters" on:
Wikipedia
Google
Yahoo

picture info

Glucose
Glucose
Glucose
is a simple sugar with the molecular formula C6H12O6, which means that it is a molecule that is made of six carbon atoms, twelve hydrogen atoms, and six oxygen atoms. Glucose
Glucose
circulates in the blood of animals as blood sugar. It is made during photosynthesis from water and carbon dioxide, using energy from sunlight. It is the most important source of energy for cellular respiration. Glucose
Glucose
is stored as a polymer, in plants as starch and in animals as glycogen. With six carbon atoms, it is classed as a hexose, a subcategory of the monosaccharides. D- Glucose
Glucose
is one of the sixteen aldohexose stereoisomers. The D-isomer, D-glucose, also known as dextrose, occurs widely in nature, but the L-isomer, L-glucose, does not
[...More...]

"Glucose" on:
Wikipedia
Google
Yahoo

picture info

Starch
Starch
Starch
or amylum is a polymeric carbohydrate consisting of a large number of glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants as energy storage. It is the most common carbohydrate in human diets and is contained in large amounts in staple foods like potatoes, wheat, maize (corn), rice, and cassava. Pure starch is a white, tasteless and odorless powder that is insoluble in cold water or alcohol. It consists of two types of molecules: the linear and helical amylose and the branched amylopectin. Depending on the plant, starch generally contains 20 to 25% amylose and 75 to 80% amylopectin by weight.[4] Glycogen, the glucose store of animals, is a more highly branched version of amylopectin. In industry, starch is converted into sugars, for example by malting, and fermented to produce ethanol in the manufacture of beer, whisky and biofuel. It is processed to produce many of the sugars used in processed foods
[...More...]

"Starch" on:
Wikipedia
Google
Yahoo

picture info

Cellulose
Cellulose
Cellulose
is an organic compound with the formula (C 6H 10O 5) n, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units.[3][4] Cellulose
Cellulose
is an important structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms.[5] Cellulose
Cellulose
is the most abundant organic polymer on Earth.[6] The cellulose content of cotton fiber is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.[7][8][9] Cellulose
Cellulose
is mainly used to produce paperboard and paper. Smaller quantities are converted into a wide variety of derivative products such as cellophane and rayon. Conversion of cellulose from energy crops into biofuels such as cellulosic ethanol is under investigation as an alternative fuel source
[...More...]

"Cellulose" on:
Wikipedia
Google
Yahoo

picture info

Nucleophilic Substitution
In organic and inorganic chemistry, nucleophilic substitution is a fundamental class of reactions in which an electron rich nucleophile selectively bonds with or attacks the positive or partially positive charge of an atom or a group of atoms to replace a leaving group; the positive or partially positive atom is referred to as an electrophile. The whole molecular entity of which the electrophile and the leaving group are part is usually called the substrate.[1][2] The most general form of the reaction may be given as the following:Nuc: + R-LG → R-Nuc + LG:The electron pair (:) from the nucleophile(Nuc) attacks the substrate (R-LG) forming a new bond, while the leaving group (LG) departs with an electron pair. The principal product in this case is R-Nuc
[...More...]

"Nucleophilic Substitution" on:
Wikipedia
Google
Yahoo

picture info

Acid Catalysis
In acid catalysis and base catalysis a chemical reaction is catalyzed by an acid or a base. The acid is the proton donor and the base is the proton acceptor, known as Brønsted-Lowry acid and base respectively. Typical reactions catalyzed by proton transfer are esterfications and aldol reactions. In these reactions the conjugate acid of the carbonyl group is a better electrophile than the neutral carbonyl group itself. Catalysis
Catalysis
by either acid or base can occur in two different ways: specific catalysis and general catalysis. Many enzymes operate by acid-catalysis.Contents1 Applications and examples1.1 Brønsted acids 1.2 Solid acid catalysts2 Mechanism2.1 Specific catalysis 2.2 General catalysis3 ReferencesApplications and examples[edit] Brønsted acids[edit] Acid
Acid
catalysis is mainly used for organic chemical reactions. Many acids can function as sources for the protons
[...More...]

"Acid Catalysis" on:
Wikipedia
Google
Yahoo
.