HOME

TheInfoList



OR:

The yeast mitochondrial code (translation table 3) is a
genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
used by the mitochondrial genome of yeasts, notably ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been ...
'', '' Candida glabrata'', '' Hansenula saturnus'', and '' Kluyveromyces thermotolerans''.


The code

:    AAs = FFLLSSSSYY**CCWWTTTTPPPPHHQQRRRRIIMMTTTTNNKKSSRRVVVVAAAADDEEGGGG : Starts = ---M---------------M---------------M---------------M------------ :  Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG : Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG : Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Bases:
adenine Adenine () (symbol A or Ade) is a nucleobase (a purine derivative). It is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The three others are guanine, cytosine and thymine. Its derivativ ...
(A),
cytosine Cytosine () (symbol C or Cyt) is one of the four nucleobases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an amin ...
(C),
guanine Guanine () (symbol G or Gua) is one of the four main nucleobases found in the nucleic acids DNA and RNA, the others being adenine, cytosine, and thymine (uracil in RNA). In DNA, guanine is paired with cytosine. The guanine nucleoside is called ...
(G) and
thymine Thymine () (symbol T or Thy) is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidine nuc ...
(T) or uracil (U). Amino acids:
Alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side ...
(Ala, A),
Arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the a ...
(Arg, R), Asparagine (Asn, N),
Aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
(Asp, D), Cysteine (Cys, C),
Glutamic acid Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
(Glu, E), Glutamine (Gln, Q),
Glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinogen ...
(Gly, G),
Histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the d ...
(His, H), Isoleucine (Ile, I),
Leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α- c ...
(Leu, L),
Lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −CO ...
(Lys, K), Methionine (Met, M), Phenylalanine (Phe, F), Proline (Pro, P), Serine (Ser, S), Threonine (Thr, T),
Tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic ...
(Trp, W), Tyrosine (Tyr, Y), Valine (Val, V).


Differences from the standard code

* The remaining CGN codons are rare in ''
Saccharomyces cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been ...
'' and absent in '' Candida glabrata''. * The AUA codon is common in the gene var1 coding for the single mitochondrial
ribosomal protein A ribosomal protein (r-protein or rProtein) is any of the proteins that, in conjunction with rRNA, make up the ribosomal subunits involved in the cellular process of translation. ''E. coli'', other bacteria and Archaea have a 30S small subunit a ...
, but rare in genes encoding the enzymes. * The coding assignments of the AUA (Met or Ile) and CUU (possibly Leu, not Thr) are uncertain in '' Hansenula saturnus''. * The coding assignment of Thr to CUN is uncertain in '' Kluyveromyces thermotolerans''.


See also

*
List of genetic codes While there is much commonality, different parts of the tree of life use slightly different genetic codes. When translating from genome to protein, the use of the correct genetic code is essential. The mitochondrial codes are the relatively well-k ...


References

{{Reflist, refs= {{Cite journal , pmid = 8083884 , year = 1994 , last1 = Clark-Walker , first1 = G. D. , last2 = Weiller , first2 = G. F. , title = The structure of the small mitochondrial DNA of ''Kluyveromyces thermotolerans'' is likely to reflect the ancestral gene order in fungi , journal = Journal of Molecular Evolution , volume = 38 , issue = 6 , pages = 593–601 , doi=10.1007/bf00175879 , bibcode = 1994JMolE..38..593C , s2cid = 10510397 Molecular genetics Gene expression Protein biosynthesis