wheat and chessboard problem
   HOME

TheInfoList



OR:

The wheat and chessboard problem (sometimes expressed in terms of rice grains) is a
mathematical problem A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the Solar System, or a problem of a more ...
expressed in textual form as: The problem may be solved using simple
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
. With 64 squares on a chessboard, if the number of grains doubles on successive squares, then the sum of grains on all 64 squares is: and so forth for the 64 squares. The total number of grains can be shown to be 264−1 or 18,446,744,073,709,551,615 (eighteen
quintillion Depending on context (e.g. language, culture, region), some large numbers have names that allow for describing large quantities in a textual form; not mathematical. For very large values, the text is generally shorter than a decimal numeric repres ...
, four hundred forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion, seven hundred nine million, five hundred fifty-one thousand, six hundred and fifteen). This exercise can be used to demonstrate how quickly exponential sequences grow, as well as to introduce exponents, zero power,
capital-sigma notation In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polyn ...
, and
geometric series In mathematics, a geometric series is a series (mathematics), series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, 1/2 + 1/4 + 1/8 + 1/16 + ⋯, the series \tfrac12 + \tfrac1 ...
. Updated for modern times using pennies and a hypothetical question such as "Would you rather have a million dollars or a penny on day one, doubled every day until day 30?", the formula has been used to explain
compound interest Compound interest is interest accumulated from a principal sum and previously accumulated interest. It is the result of reinvesting or retaining interest that would otherwise be paid out, or of the accumulation of debts from a borrower. Compo ...
. (Doubling would yield over one billion seventy three million pennies, or over 10 million dollars: 230−1=1,073,741,823).


Origins

The problem appears in different stories about the invention of
chess Chess is a board game for two players. It is an abstract strategy game that involves Perfect information, no hidden information and no elements of game of chance, chance. It is played on a square chessboard, board consisting of 64 squares arran ...
. One of them includes the geometric progression problem. The story is first known to have been recorded in 1256 by
Ibn Khallikan Aḥmad bin Muḥammad bin Ibrāhīm bin Abū Bakr ibn Khallikān (; 22 September 1211 – 30 October 1282), better known as Ibn Khallikān, was a renowned Islamic historian of Kurdish origin who compiled the celebrated biographical encyclopedi ...
. Another version has the inventor of chess (in some tellings Sessa, an ancient Indian minister) request his ruler give him wheat according to the wheat and chessboard problem. The ruler laughs it off as a meager prize for a brilliant invention, only to have court treasurers report the unexpectedly huge number of wheat grains would outstrip the ruler's resources. Versions differ as to whether the inventor becomes a high-ranking advisor or is executed. Macdonnell also investigates the earlier development of the theme.


Solutions

The simple, brute-force solution is just to manually double and add each step of the series: : T_ = 1 + 2 + 4 + ..... + 9,223,372,036,854,775,808 = 18,446,744,073,709,551,615 ::where T_ is the total number of grains. The series may be expressed using exponents: : T_ = 2^0 + 2^1 + 2^2 + \cdots + 2^ and, represented with capital-sigma notation as: :\sum_^ 2^k.\, It can also be solved much more easily using: : T_ = 2^- 1. \, A proof of which is: : s = 2^0 + 2^1 + 2^2 + \cdots + 2^. Multiply each side by 2: : 2s = 2^1 + 2^2 + 2^3 + \cdots + 2^ + 2^. Subtract original series from each side: : \begin 2s - s & = \qquad\quad \cancel + \cancel + \cdots + \cancel + 2^ \\ & \quad - 2^0 - \cancel - \cancel - \cdots - \cancel \\ & = 2^ - 2^0 \\ \therefore s & = 2^- 1. \end The solution above is a particular case of the sum of a geometric series, given by :a + ar + a r^2 + a r^3 + \cdots + a r^ = \sum_^ ar^k= a \, \frac, where a is the first term of the series, r is the common ratio and n is the number of terms. In this problem a = 1, r = 2 and n = 64. Thus, :\begin \sum_^ 2^k & = 2^0 + 2^1 + 2^2 + \cdots + 2^ \\ & = 2^-1 \end for n being any positive integer. The exercise of working through this problem may be used to explain and demonstrate exponents and the quick growth of
exponential Exponential may refer to any of several mathematical topics related to exponentiation, including: * Exponential function, also: **Matrix exponential, the matrix analogue to the above *Exponential decay, decrease at a rate proportional to value * Ex ...
and
geometric Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
sequences. It can also be used to illustrate
sigma notation In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynom ...
. When expressed as exponents, the
geometric series In mathematics, a geometric series is a series (mathematics), series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, 1/2 + 1/4 + 1/8 + 1/16 + ⋯, the series \tfrac12 + \tfrac1 ...
is: 20 + 21 + 22  + 23 + ... and so forth, up to 263. The base of each exponentiation, "2", expresses the doubling at each square, while the exponents represent the position of each square (0 for the first square, 1 for the second, and so on.). The number of grains is the 64th
Mersenne number In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17t ...
.


Second half of the chessboard

In
technology strategy Technology strategy (information technology strategy or IT strategy) is the overall plan which consists of objectives, principles and tactics relating to use of technologies within a particular organization. Such strategies primarily focus on the ...
, the "second half of the chessboard" is a phrase, coined by
Ray Kurzweil Raymond Kurzweil ( ; born February 12, 1948) is an American computer scientist, author, entrepreneur, futurist, and inventor. He is involved in fields such as optical character recognition (OCR), speech synthesis, text-to-speech synthesis, spee ...
, in reference to the point where an exponentially growing factor begins to have a significant economic impact on an organization's overall business strategy. While the number of grains on the first half of the chessboard is large, the amount on the second half is vastly (232 > 4 billion times) larger. The number of grains of wheat on the first half of the chessboard is , for a total of 4,294,967,295 (232 − 1) grains, or about 279 tonnes of wheat (assuming 65 mg as the mass of one grain of wheat). The number of grains of wheat on the ''second'' half of the chessboard is , for a total of 264 − 232 grains. This is equal to the square of the number of grains on the first half of the board, plus itself. The first square of the second half alone contains one more grain than the entire first half. On the 64th square of the chessboard alone, there would be 263 = 9,223,372,036,854,775,808 grains, more than two billion times as many as on the first half of the chessboard. On the entire chessboard there would be 264 − 1 = 18,446,744,073,709,551,615 grains of wheat, weighing about 1,199,000,000,000
metric tons The tonne ( or ; symbol: t) is a unit of mass equal to 1,000 kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton in the United States to distinguish it from the non-metric units of the sh ...
. This is over 1,600 times the global production of wheat (729 million metric tons in 2014 and 780.8 million tonnes in 2019).


Use

Carl Sagan Carl Edward Sagan (; ; November 9, 1934December 20, 1996) was an American astronomer, planetary scientist and science communicator. His best known scientific contribution is his research on the possibility of extraterrestrial life, including e ...
titled the second chapter of his final book "The Persian Chessboard" and wrote, referring to bacteria, that "Exponentials can't go on forever, because they will gobble up everything." Similarly, ''
The Limits to Growth ''The Limits to Growth'' (''LTG'') is a 1972 report that discussed the possibility of exponential Economic growth, economic and population growth with finite supply of resources, studied by computer simulation. The study used the World3 computer ...
'' uses the story to present suggested consequences of
exponential growth Exponential growth occurs when a quantity grows as an exponential function of time. The quantity grows at a rate directly proportional to its present size. For example, when it is 3 times as big as it is now, it will be growing 3 times as fast ...
: "Exponential growth never can go on very long in a finite space with finite resources."Meadows, Donella H., Dennis L. Meadows, Jørgen Randers, and William W. Behrens III (1972). . New York: University Books. . Retrieved 2015-04-05.


See also

* Legend of the Ambalappuzha Paal Payasam *
Malthusian growth model A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert ...
*
Moore's law Moore's law is the observation that the Transistor count, number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and Forecasting, projection of a historical trend. Rather than a law of ...
*
Orders of magnitude (data) The order of magnitude of data may be specified in strictly standards-conformant units of information and multiples of the bit and byte with decimal scaling, or using historically common usages of a few multiplier prefixes in a binary interpreta ...
*
Technology strategy Technology strategy (information technology strategy or IT strategy) is the overall plan which consists of objectives, principles and tactics relating to use of technologies within a particular organization. Such strategies primarily focus on the ...
*
The Limits to Growth ''The Limits to Growth'' (''LTG'') is a 1972 report that discussed the possibility of exponential Economic growth, economic and population growth with finite supply of resources, studied by computer simulation. The study used the World3 computer ...


References


External links

*
Salt and chessboard problem
- A variation on the wheat and chessboard problem with measurements of each square. * {{Wikiversity-inline, Math Adventures/Wheat and the Chessboard Mathematical chess problems Exponentials
Chess Chess is a board game for two players. It is an abstract strategy game that involves Perfect information, no hidden information and no elements of game of chance, chance. It is played on a square chessboard, board consisting of 64 squares arran ...