Methods
There are two broad categories of screening techniques: ligand-based and structure-based. The remainder of this page will reflect Figure 1 Flow Chart of Virtual Screening.Ligand-based methods
Given a set of structurally diverseStructure-based methods
Structure-based virtual screening approach includes different computational techniques that consider the structure of the receptor that is the molecular target of the investigated active ligands. Some of these techniques include molecular docking, structure-based pharmacophore prediction, and molecular dynamics simulations. Molecular docking is the most used structure-based technique, and it applies a scoring function to estimate the fitness of each ligand against the binding site of the macromolecular receptor, helping to choose the ligands with the most high affinity. Currently, there are some webservers oriented to prospective virtual screening.Hybrid methods
Hybrid methods that rely on structural and ligand similarity were also developed to overcome the limitations of traditional VLS approaches. This methodologies utilizes evolution‐based ligand‐binding information to predict small-molecule binders and can employ both global structural similarity and pocket similarity. A global structural similarity based approach employs both an experimental structure or a predicted protein model to find structural similarity with proteins in the PDB holo‐template library. Upon detecting significant structural similarity, 2D fingerprint based Tanimoto coefficient metric is applied to screen for small-molecules that are similar to ligands extracted from selected holo PDB templates. The predictions from this method have been experimentally assessed and shows good enrichment in identifying active small molecules. The above specified method depends on global structural similarity and is not capable of ''a priori'' selecting a particular ligand‐binding site in the protein of interest. Further, since the methods rely on 2D similarity assessment for ligands, they are not capable of recognizing stereochemical similarity of small-molecules that are substantially different but demonstrate geometric shape similarity. To address these concerns, a new pocket centric approach, ''PoLi,'' capable of targeting specific binding pockets in holo‐protein templates, was developed and experimentally assessed.Computing Infrastructure
The computation of pair-wise interactions between atoms, which is a prerequisite for the operation of many virtual screening programs, scales by , ''N'' is the number of atoms in the system. Due to the quadratic scaling, the computational costs increase quickly.Ligand-based Approach
Ligand-based methods typically require a fraction of a second for a single structure comparison operation. Sometimes a single CPU is enough to perform a large screening within hours. However, several comparisons can be made in parallel in order to expedite the processing of a large database of compounds.Structure-based Approach
The size of the task requires aAccuracy
The aim of virtual screening is to identify molecules of novel chemical structure that bind to the macromolecular target of interest. Thus, success of a virtual screen is defined in terms of finding interesting new scaffolds rather than the total number of hits. Interpretations of virtual screening accuracy should, therefore, be considered with caution. Low hit rates of interesting scaffolds are clearly preferable over high hit rates of already known scaffolds. Most tests of virtual screening studies in the literature are retrospective. In these studies, the performance of a VS technique is measured by its ability to retrieve a small set of previously known molecules with affinity to the target of interest (active molecules or just actives) from a library containing a much higher proportion of assumed inactives or decoys. There are several distinct ways to select decoys by matching the properties of the corresponding active molecule and more recently decoys are also selected in a property-unmatched manner. The actual impact of decoy selection, either for training or testing purposes, has also been discussed. By contrast, in prospective applications of virtual screening, the resulting hits are subjected to experimental confirmation (e.g., IC50 measurements). There is consensus that retrospective benchmarks are not good predictors of prospective performance and consequently only prospective studies constitute conclusive proof of the suitability of a technique for a particular target.Application to drug discovery
Virtual screening is a very useful application when it comes to identifying hit molecules as a beginning for medicinal chemistry. As the virtual screening approach begins to become a more vital and substantial technique within the medicinal chemistry industry the approach has had an expeditious increase.Ligand-based methods
While not knowing the structure trying to predict how the ligands will bind to the receptor. With the use of pharmacophore features each ligand identified donor, and acceptors. Equating features are overlaid, however given it is unlikely there is a single correct solution.Pharmacophore models
This technique is used when merging the results of searches by using unlike reference compounds, same descriptors and coefficient, but different active compounds. This technique is beneficial because it is more efficient than just using a single reference structure along with the most accurate performance when it comes to diverse actives. Pharmacophore is an ensemble of steric and electronic features that are needed to have an optimal supramolecular interaction or interactions with a biological target structure in order to precipitate its biological response. Choose a representative as a set of actives, most methods will look for similar bindings. It is preferred to have multiple rigid molecules and the ligands should be diversified, in other words ensure to have different features that don't occur during the binding phase.Shape-Based Virtual Screening
Shape-based molecular similarity approaches have been established as important and popular virtual screening techniques. At present, the highly optimized screening platform ROCS (Rapid Overlay of Chemical Structures) is considered the de facto industry standard for shape-based, ligand-centric virtual screening. It uses a Gaussian function to define molecular volumes of small organic molecules. The selection of the query conformation is less important, rendering shape-based screening ideal for ligand-based modeling: As the availability of a bioactive conformation for the query is not the limiting factor for screening — it is more the selection of query compound(s) that is decisive for screening performance.Field-Based Virtual Screening
As an improvement to Shape-Based similarity methods, Field-Based methods try to take into account all the fields that influence a ligand-receptor interaction while being agnostic of the chemical structure used as a query. Examples of other fields that are used in these methods are Electrostatic or Hidrophobic fields.Quantitative-Structure Activity Relationship
Quantitative-Structure Activity Relationship (QSAR) models consist of predictive models based on information extracted from a set of known active and known inactive compounds. SAR's (Structure Activity Relationship) where data is treated qualitatively and can be used with structural classes and more than one binding mode. Models prioritize compounds for lead discovery.Machine learning algorithms
Machine learning algorithms have been widely used in virtual screening approaches. Supervised learning techniques use a training and test datasets composed of known active and known inactive compounds. Different ML algorithms have been applied with success in virtual screening strategies, such as recursive partitioning, support vector machines, k-nearest neighbors andSubstructural analysis in Machine Learning
The first Machine Learning model used on large datasets is the Substructure Analysis that was created in 1973. Each fragment substructure make a continuous contribution an activity of specific type. Substructure is a method that overcomes the difficulty of massive dimensionality when it comes to analyzing structures in drug design. An efficient substructure analysis is used for structures that have similarities to a multi-level building or tower. Geometry is used for numbering boundary joints for a given structure in the onset and towards the climax. When the method of special static condensation and substitutions routines are developed this method is proved to be more productive than the previous substructure analysis models.Recursive partitioning
Recursively partitioning is method that creates a decision tree using qualitative data. Understanding the way rules break classes up with a low error of misclassification while repeating each step until no sensible splits can be found. However, recursive partitioning can have poor prediction ability potentially creating fine models at the same rate.Structure-based methods known protein ligand docking
Ligand can bind into an active site within a protein by using a docking search algorithm, and scoring function in order to identify the most likely cause for an individual ligand while assigning a priority order.See also
*References
Further reading
* * * * * * * {{refendExternal links