HOME

TheInfoList



OR:

The viridans streptococci are a large group of commensal streptococcal
Gram-positive bacteria In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. Gram-positive bac ...
species that are α-hemolytic, producing a green coloration on blood agar plates (hence the name "viridans", from Latin "vĭrĭdis", green), although some species in this group are actually γ-hemolytic, meaning they produce no change on blood agar. The pseudo- taxonomic term "Streptococcus viridans" is often used to refer to this group of species, but writers who do not like to use the pseudotaxonomic term (which treats a group of species as if they were one species) prefer the terms viridans streptococci,Dorland's Illustrated Medical Dictionary, headword "streptococcus", subentry "viridans streptococci". viridans group streptococci (VGS), or viridans streptococcal species. These species possess no
Lancefield Lancefield is a town in the Shire of Macedon Ranges local government area in Victoria, Australia north of the state capital, Melbourne and had a population of 2,743 at the 2021 census. History The area was used by the indigenous aborigina ...
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune respon ...
s. In general,
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a g ...
icity is low.


Identification

Viridans streptococci can be differentiated from '' Streptococcus pneumoniae'' using an
optochin Optochin (or ethylhydrocupreine hydrochloride) is a derivative of quinine introduced in 1911 by Morgenroth and Levy with the intention to treat pneumococci infection. In very high dilutions, it inhibits the growth of representatives of all four gr ...
test, as viridans streptococci are optochin-resistant; they also lack either the
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with w ...
-based capsule typical of ''S. pneumoniae'' or the Lancefield antigens of the pyogenic members of the genus.


Pathology

The organisms are most abundant in the mouth, and one member of the group, ''
S. mutans ''Streptococcus mutans'' is a facultatively anaerobic, gram-positive coccus (round bacterium) commonly found in the human oral cavity and is a significant contributor to tooth decay. It is part of the "streptococci" (plural, non-italic lowerc ...
'', is the cause of dental caries in most cases and populations. '' S. sanguinis'' is also another potential cause. Others may be involved in other mouth or gingival infections as pericoronitis. If they are introduced into the bloodstream, they have the potential of causing
endocarditis Endocarditis is an inflammation of the inner layer of the heart, the endocardium. It usually involves the heart valves. Other structures that may be involved include the interventricular septum, the chordae tendineae, the mural endocardium, or the ...
, in particular in individuals with damaged heart valves. They are the most common causes of
subacute bacterial endocarditis Subacute bacterial endocarditis, abbreviated SBE, is a type of endocarditis (more specifically, infective endocarditis). Subacute bacterial endocarditis can be considered a form of type III hypersensitivity. Signs and symptoms Among the signs of ...
. Viridans streptococci are identified in cases of
neonatal infection Neonatal infections are infections of the neonate (newborn) acquired during prenatal development or in the first four weeks of life (neonatal period). Neonatal infections may be contracted by mother to child transmission, in the birth canal duri ...
s. Viridans streptococci have the unique ability to synthesize
dextran Dextran is a complex branched glucan ( polysaccharide derived from the condensation of glucose), originally derived from wine. IUPAC defines dextrans as "Branched poly-α-d-glucosides of microbial origin having glycosidic bonds predominantly C- ...
s from
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
, which allows them to adhere to
fibrin Fibrin (also called Factor Ia) is a fibrous, non-globular protein involved in the clotting of blood. It is formed by the action of the protease thrombin on fibrinogen, which causes it to polymerize. The polymerized fibrin, together with pl ...
- platelet aggregates at damaged heart valves. This mechanism underlies their ability to cause subacute valvular heart disease following their introduction into the bloodstream (e.g., following dental extraction).


Identification

Phenotypic and biochemical identification Identification of VGS to the species level can be difficult, and phenotypic identification is not always accurate. The name "viridans" is somewhat of a misnomer, as many species do not produce any hemolysis on blood agar. From a classification perspective, it is not useful to try to differentiate alpha-hemolysis from a lack of hemolysis on blood agar plates (sometimes referred to as "gamma-hemolysis"); this feature can vary widely with the growth medium used to cultivate the organism, as well as the incubation temperature. Lack of alpha hemolysis does not seem to correlate with the clinical outcome or severity of disease; no enzymatic or toxigenic effect has ever been documented as a by-product of alpha hemolysis. Under the microscope, bacteria from the viridans group are gram-positive cocci in chains. They do not express catalase and so are catalase-negative. They are leucine aminopeptidase positive, pyrrolidonylarylamidase negative, and do not grow in 6.5% NaCl, and almost all species are negative for growth on bile esculin agar. They differ from pneumococci in that they are optochin resistant and are not bile soluble. However, Richter et al. examined misidentification of VGS submitted to antimicrobial surveillance programs as pneumococci and found that the distinction of ''S. pneumoniae'' from the VGS can be difficult, which is not surprising in light of the fact that ''S. mitis'' and ''S. oralis'' possess >99% sequence homology with ''S. pneumoniae'' (47). The authors also found that optochin disk testing did not perform as well as bile solubility testing for identification; in a survey of 1,733 isolates tested, bile solubility testing had higher sensitivity and specificity for differentiation of VGS from pneumococci (47). ''S. anginosus'' group The ''S. anginosus'' group of organisms can be beta-, alpha- or nonhemolytic. The isolates lacking beta-hemolysis are generally those grouped with the VGS. ''S. constellatus'' is the most likely of this group to be beta-hemolytic. There is some evidence implicating beta-hemolytic ''S. constellatus'' subsp. pharyngis as a cause of pharyngitis (55). ''S. intermedius'' is the species in this group most commonly isolated from brain and liver abscesses. The ''S. anginosus'' group can possess Lancefield group antigens A, C, G, and F, although ''S. intermedius'' almost never possesses Lancefield group antigens. Isolates of the ''S. anginosus'' group have a characteristic "butterscotch" odor. Members of the group are universally positive for three biochemical reactions: acetoin production from glucose (positive Vogues–Proskauer reaction), arginine, and sorbitol. These are very useful for the differentiation of this group from other VGS. ''S. mitis'' group. The ''S. mitis'' group of organisms contains several species and is biochemically very inert, which can make species level identification very challenging. The use of invalid species names has also been a particular problem with the ''S. mitis'' group. Isolates in this group are negative for acetoin production, arginine, esculin, and mannitol and are sorbitol fermentation negative (14). ''S. pneumoniae'' is a recently characterized member of the ''S. mitis'' group (1). As the organism is closely related to S. pneumoniae and other S. mitis group organisms, accurate identification can be difficult. ''S. pseudopneumoniae'' lacks the pneumococcal capsule and is resistant to optochin when incubated in an atmosphere with elevated CO2 but is susceptible when incubated in ambient air. Bile solubility is a more specific test for ''S. pseudopneumoniae'' than optochin susceptibility, as the organism is not bile soluble (1). ''S. sanguinis'' group The genetically heterogeneous ''S. sanguinis'' group was formerly known as ''S. sanguinis''. Some taxonomists have lumped the ''S. sanguinis'' group in with the ''S. mitis'' group based on 16S rRNA gene sequence analysis, but ''S. sanguinis'' group organisms exhibit divergent phenotypic characteristics. Isolates in the ''S. sanguinis'' group are arginine and esculin positive. Like members of the ''S. mitis'' group, they are negative for acetoin production and mannitol and sorbitol fermentation. The ''S. sanguinis'' group includes ''S. sanguinis'', ''S. parasanguinis'', and ''S. gordonii'' (14). ''S. salivarius'' group The ''S. salivarius'' group is closely related to the ''S. bovis'' group. Species from this group that have been isolated from human infection include ''S. salivarius'' and ''S. vestibularis'', as well as ''S. thermophilus'', which has been identified from dairy products. ''S. salivarius'' group organisms are positive for acetoin production and are esculin positive but are negative for arginine hydrolysis and fermentation of mannitol and sorbitol. ''S. mutans'' group Members of the ''S. mutans'' group are primarily isolated from the human oral cavity and includes several species that are phenotypically similar. ''S. mutans'' and ''S. sobrinus'' are the species within this group most commonly isolated from human infection. They do not hydrolyze arginine but are positive for acetoin production, esculin hydrolysis, and mannitol and sorbitol fermentation. Automated biochemical methods for identification For the VGS, the use of automated systems for identification has historically been reported as problematic, and this theme applies to multiple automated methodologies. One of the major factors affecting the quality of the identifications generated is that the systems may not have all species represented in their databases (32). In one investigation comparing the accuracy of the Vitek2 ID-GPC card to that of conventional agar-based biochemical methods for identification of a variety of Gram-positive and Gram-negative organisms, 72% of Gram-positive isolates were accurately identified by the Vitek2 system (21). Among the most problematic identifications (whether incorrectly identified or unresolved) were the VGS; ''S. anginosus'', ''S. mutans'', and ''S. sanguinis'' were misidentified as other VGS species and, in some instances, as S. pneumoniae (21). An investigation into the ability of the BD Phoenix system SMIC/ID panel to identify Streptococcus spp. classified 97 consecutive clinical isolates of streptococci, including 34 isolates of VGS, with biochemical methods as the reference method (26). Ninety-one percent of the streptococcal isolates showed agreement between the Phoenix and the reference method. Of the 12 S. mitis group isolates tested, the Phoenix system correctly identified seven isolates, with two discordant identifications, and there were three isolates for which the Phoenix system did not produce any identification. Of 22 ''S. anginosus'' group isolates, 18 were correctly identified and four were discordant. A second study evaluated the Phoenix SMIC/ID-2 panel using the API 20 Strep system as a comparator method (resolving discrepant results via 16S rRNA gene sequencing and amplification and sequencing of housekeeping genes) (5). For the VGS, 31 isolates were assayed, with only 53% concordance between the Phoenix and reference methods for ''S. mitis'' group organisms, 100% concordance for the ''S. anginosus'' group, and 75% concordance for ''S. sanguinis'' group organisms (5). Sequence-based identification Historically, DNA–DNA hybridization studies have been used to confirm species level identifications for the VGS. However, these procedures are not practical for clinical laboratories to use for identification of these organisms. Other sequence-based identification systems have subsequently been introduced for VGS species level identification. In general, 16S rRNA gene sequencing results in poor resolution to species level in the VGS. This is due to the high degree of 16S rRNA gene homology in this group of organisms; ''S. mitis'', ''S. oralis'', ''S. pseudopneumoniae'', and ''S. pneumoniae'' almost always have >99% sequence homology in this gene. In light of the high degree of 16S rRNA gene sequence similarity, sequencing of alternative gene targets for reliable identification to the species level has been explored. One promising target, rnpB, was explored by Innings et al., who analyzed two variable regions of rnpB by pyrosequencing (28). Of the 43 species analyzed, all were identified to species level, except for two isolates: ''S. anginosus''/''S. constellatus'' and ''S. infantis''/''S. peroris''. rnpB can be used for identification of VGS with high-level resolution. One other successful approach is sequence analysis of the manganese-dependent superoxide dismutase gene, described by Poyart et al. This technique was used to accurately differentiate over 29 streptococcal species, including 16 VGS species, with clear differentiation of ''S. mitis'', ''S. oralis'', and ''S. pneumoniae'' (44, 45). Other techniques that have been used, with various degrees of success, are sequence analysis of the 16S-23S intergenic spacer region, d-alanine-d-alanine ligase gene sequencing, and hyaluronate lyase gene sequencing.


References


Further reading

{{Taxonbar, from=Q751405 Streptococcaceae Gram-positive bacteria