HOME

TheInfoList



OR:

Vesicle fusion is the merging of a vesicle with other
vesicles Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
or a part of a
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
. In the latter case, it is the end stage of
secretion 440px Secretion is the movement of material from one point to another, such as a secreted chemical substance from a cell or gland. In contrast, excretion is the removal of certain substances or waste products from a cell or organism. The classic ...
from secretory vesicles, where their contents are expelled from the cell through
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
. Vesicles can also fuse with other target cell compartments, such as a
lysosome A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane p ...
.
Exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use ...
occurs when secretory vesicles transiently dock and fuse at the base of cup-shaped structures at the cell plasma membrane called
porosome 440px 280px Porosomes are cup-shaped supramolecular structures in the cell membranes of eukaryotic cells where secretory vesicles transiently dock in the process of vesicle fusion and secretion. The transient fusion of secretory vesicle membrane ...
, the universal secretory machinery in cells. Vesicle fusion may depend on
SNARE proteins SNARE proteins – " SNAP REceptor" – are a large protein family consisting of at least 24 members in yeasts, more than 60 members in mammalian cells, and some numbers in plants. The primary role of SNARE proteins is to mediate vesicle fu ...
in the presence of increased intracellular
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
(Ca2+) concentration.


Triggers

Stimuli that trigger vesicle fusion act by increasing intracellular Ca2+. *
Synaptic vesicle In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulse ...
s commit vesicle fusion by a
nerve impulse An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, c ...
reaching the synapse, activating
voltage-dependent calcium channel Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (''e.g.'', muscle, glial cells, neurons, etc.) with a permea ...
s that cause influx of Ca2+ into the cell. * In the
endocrine system The endocrine system is a messenger system comprising feedback loops of the hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In vertebrates, the hypothalamus is th ...
, many hormones are released by their releasing hormones binding to G protein coupled receptors coupled to the Gq alpha subunit, activating the IP3/DAG pathway to increase Ca2+. Examples of this mechanism include: ** Gonadotropin releasing hormonePage 237 in: **
Thyrotropin releasing hormone Thyrotropin-releasing hormone (TRH) is a hypophysiotropic hormone produced by neurons in the hypothalamus that stimulates the release of thyroid-stimulating hormone (TSH) and prolactin from the anterior pituitary. TRH has been used clinica ...
**
Growth hormone releasing hormone Growth may refer to: Biology * Auxology, the study of all aspects of human physical growth * Bacterial growth * Cell growth * Growth hormone, a peptide hormone that stimulates growth * Human development (biology) * Plant growth * Secondary growth ...
(minor pathway - main one is cAMP dependent pathway)


Model systems

Model systems consisting of a single
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
or a mixture have been studied by physical chemists. Cardiolipin is found mainly in mitochondrial membranes, and calcium ions play an important role in the respiratory processes mediated by the
mitochondrion A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is use ...
. The forces involved have been postulated to explain this process in terms of nucleation for agglomeration of smaller supramolecular entities or phase changes in the structure of the biomembranes.


Mechanisms


Synaptic cleft fusion

In
synaptic vesicle In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulse ...
fusion, the vesicle must be within a few nanometers of the target membrane for the fusion process to begin. This closeness allows the cell membrane and the vesicle to exchange lipids which is mediated by certain proteins which remove water that comes between the forming junction. Once the vesicle is in position it must wait until Ca2+ enters the cell by the propagation of an
action potential An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells ...
to the presynaptic membrane. Ca2+ binds to specific proteins, one of which is Synaptotagmin, in neurons which triggers the complete fusion of the vesicle with the target membrane. SNARE proteins are also thought to help mediate which membrane is the target of which vesicle.


SNARE protein and pore formation

Assembly of the SNAREs into the "trans" complexes likely bridges the opposing
lipid bilayer The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many vir ...
s of membranes belonging to cell and secretory granule, bringing them in proximity and inducing their fusion. The influx of calcium into the cell triggers the completion of the assembly reaction, which is mediated by an interaction between the putative calcium sensor, synaptotagmin, with membrane lipids and/or the partially assembled SNARE complex. One hypothesis implicates the molecule Complexin within the SNARE complex and its interaction with the molecule synaptotagmin. Known as the "clamp" hypothesis, the presence of complexin normally inhibits the fusion of the vesicle to the cell membrane. However, binding of calcium ions to synaptotagmin triggers the complexin to be released or inactivated, so that the vesicle is then free to fuse. According to the "zipper" hypothesis, the complex assembly starts at the N-terminal parts of SNARE motifs and proceeds towards the C-termini that anchor interacting proteins in membranes. Formation of the "trans"-SNARE complex proceeds through an intermediate complex composed of SNAP-25 and syntaxin-1, which later accommodates synaptobrevin-2 (the quoted syntaxin and synaptobrevin isotypes participate in neuronal neuromediator release). Based on the stability of the resultant ''cis-SNARE complex'', it has been postulated that energy released during the assembly process serves as a means for overcoming the repulsive forces between the membranes. There are several models that propose explanation of a subsequent step – the formation of stalk and fusion pore, but the exact nature of these processes remains debated. Two of the most prominent models on fusion pore formation are the lipid-lined and protein-lined fusion pore theories.


Lipid-lined fusion pore theory

One possible model for fusion pore formation is the lipid-line pore theory. In this model, once the membranes have been brought into sufficiently close proximity via the "zipper" mechanism of the SNARE complex, membrane fusion occurs spontaneously. It has been shown that when the two membranes are brought within a critical distance, it is possible for hydrophilic lipid headgroups of one membrane to merge with the opposing membrane. In the lipid-lined fusion pore model, the SNARE complex acts as a scaffold, pulling on the membrane, causing both membranes to pucker so they may reach the critical fusion distance. As the two membranes begin to fuse, a lipid-lined stalk is produced, expanding radially outward as fusion proceeds. While a lipid-lined pore is possible and can achieve all the same properties observed in early pore formation, sufficient data does not exist to prove it is the sole method of formation. There is not currently a proposed mechanism on inter-cellular regulation for fluctuation of lipid-lined pores, and they would have a substantially more difficult time producing effects such as the "kiss-and-run" when compared with their protein-lined counterparts. Lipid-lined pores effectiveness would also be highly dependent on the composition of both membranes, and its success or failure could vary wildly with changes in elasticity and rigidity.


Protein-lined fusion pore theory

Another possible model for fusion pore formation is the protein-lined pore theory. In this model, after activation of synaptotagmin by calcium, several SNARE complexes come together to form a ring structure, with synaptobrevin forming the pore in the vesicle membrane and Syntaxin forming the pore in the cell membrane. As the initial pore expands it incorporates lipids from both bilayers, eventually resulting in complete fusion of the two membranes. The SNARE complex has a much more active role in the protein-lined pore theory; because the pore consists initially entirely of SNARE proteins, the pore is easily able to undergo intercellular regulation, making fluctuation and "kiss-and-run" mechanisms easily attainable. A protein-lined pore perfectly meets all the observed requirements of the early fusion pore, and while some data does support this theory, sufficient data does not exist to pronounce it the primary method of fusion. A protein-lined pore requires at least five copies of the SNARE complex while fusion has been observed with as few as two. In both theories the function of the SNARE complex remains largely unchanged, and the entire SNARE complex is necessary to initiate fusion. It has, however, been proven that ''in vitro'' Syntaxin ''per se'' is sufficient to drive spontaneous calcium independent fusion of synaptic vesicles containing v-SNAREs. This suggests that in Ca2+-dependent neuronal exocytosis synaptotagmin is a dual regulator, in absence of Ca2+ ions to inhibit SNARE dynamics, while in presence of Ca2+ ions to act as
agonist An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the ag ...
in the membrane fusion process.


Kiss-and-run hypothesis

In
synaptic vesicle In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulse ...
s, some neurochemists have suggested that vesicles occasionally may not completely fuse with presynaptic membranes in neurotransmitter release into the
synaptic cleft Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous syste ...
. The controversy lies in whether or not
endocytosis Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. ...
always occurs in vesicle reforming after release of the neurotransmitter. Another proposed mechanism for release of vesicle contents into extracellular fluid is called
kiss-and-run fusion Kiss-and-run fusion is a type of synaptic vesicle release where the vesicle opens and closes transiently. In this form of exocytosis, the vesicle docks and transiently fuses at the presynaptic membrane and releases its neurotransmitters across the s ...
. There is some indication that vesicles may only form a small pore in the presynaptic membrane allowing contents to be released by standard diffusion for a short while before retreating back into the presynaptic cell. This mechanism may be a way around
clathrin-mediated endocytosis Receptor-mediated endocytosis (RME), also called clathrin-mediated endocytosis, is a process by which cells absorb metabolites, hormones, proteins – and in some cases viruses – by the inward budding of the plasma membrane (invagination). This ...
. It is also proposed that the vesicle does not need to return to an
endosome Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membrane can ...
to refill, though it is not thoroughly understood by which mechanism it would refill. This does not exclude full vesicle fusion, but only states that both mechanisms may operate in synaptic clefts. "Kiss and run" has been shown to occur in endocrine cells, though it has not been directly witnessed in synaptic gaps.Piginio et al. pp. 161-162


See also

* SNARE * Presynaptic active zone * Liposomes used as models for artificial cells in membrane fusion studies.


References

{{reflist Biochemistry