HOME

TheInfoList



OR:

In quantum field theory the vacuum expectation value (also called condensate or simply VEV) of an
operator Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another s ...
is its average or expectation value in the vacuum. The vacuum expectation value of an operator O is usually denoted by \langle O\rangle. One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect. This concept is important for working with correlation functions in quantum field theory. It is also important in
spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or t ...
. Examples are: *The Higgs field has a vacuum expectation value of 246
GeV GEV may refer to: * ''G.E.V.'' (board game), a tabletop game by Steve Jackson Games * Ashe County Airport, in North Carolina, United States * Gällivare Lapland Airport, in Sweden * Generalized extreme value distribution * Gev Sella, Israeli-Sou ...
. This nonzero value underlies the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property " mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other b ...
of the Standard Model. This value is given by v = 1/\sqrt = 2M_W/g \approx 246.22\, \rm, where ''MW'' is the mass of the W Boson, G_F^0 the reduced
Fermi constant In particle physics, Fermi's interaction (also the Fermi theory of beta decay or the Fermi four-fermion interaction) is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting ...
, and the weak isospin coupling, in natural units. It is also near the limit of the most massive nuclei, at v = 264.3 Da. *The
chiral condensate A fermionic condensate or Fermi–Dirac condensate is a superfluid phase formed by fermionic particles at low temperatures. It is closely related to the Bose–Einstein condensate, a superfluid phase formed by bosonic atoms under similar condi ...
in
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type o ...
, about a factor of a thousand smaller than the above, gives a large effective mass to
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s, and distinguishes between phases of
quark matter Quark matter or QCD matter ( quantum chromodynamic) refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences ...
. This underlies the bulk of the mass of most hadrons. *The
gluon condensate In quantum chromodynamics (QCD), the gluon condensate is a non-perturbative property of the QCD vacuum which could be partly responsible for giving masses to light mesons. If the gluon field tensor is represented as Gμν, then the gluon condensa ...
in
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type o ...
may also be partly responsible for masses of hadrons. The observed Lorentz invariance of space-time allows only the formation of condensates which are Lorentz scalars and have vanishing
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
. Thus
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
condensates must be of the form \langle\overline\psi\psi\rangle, where ψ is the fermion field. Similarly a
tensor field In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis ...
, Gμν, can only have a scalar expectation value such as \langle G_G^\rangle. In some vacua of string theory, however, non-scalar condensates are found. If these describe our universe, then Lorentz symmetry violation may be observable.


See also

*
Wightman axioms In mathematical physics, the Wightman axioms (also called Gårding–Wightman axioms), named after Arthur Wightman, are an attempt at a mathematically rigorous formulation of quantum field theory. Arthur Wightman formulated the axioms in the ea ...
* Correlation function (quantum field theory) *
Vacuum energy Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experimental ...
*
Dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univer ...
*
Spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or t ...


References

Quantum field theory Standard Model {{Quantum-stub