HOME

TheInfoList



OR:

Ultra-high vacuum (UHV) is the
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
regime characterised by
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
s lower than about . UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
of a gas molecule is greater than approximately 40 km, so the gas is in
free molecular flow Free molecular flow describes the fluid dynamics of gas where the mean free path of the molecules is larger than the size of the chamber or of the object under test. For tubes/objects of the size of several cm, this means pressures well below 10− ...
, and gas molecules will collide with the chamber walls many times before colliding with each other. Almost all molecular interactions therefore take place on various surfaces in the chamber. UHV conditions are integral to scientific research. Surface science experiments often require a chemically clean sample surface with the absence of any unwanted adsorbates. Surface analysis tools such as
X-ray photoelectron spectroscopy X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique based on the photoelectric effect that can identify the elements that exist within a material (elemental composition) or are covering its surface, ...
and low energy ion scattering require UHV conditions for the transmission of electron or ion beams. For the same reason, beam pipes in particle accelerators such as the Large Hadron Collider are kept at UHV.


Overview

Maintaining UHV conditions requires the use of unusual materials for equipment. Useful concepts for UHV include: *
Sorption Sorption is a physical and chemical process by which one substance becomes attached to another. Specific cases of sorption are treated in the following articles: ; Absorption: "the incorporation of a substance in one state into another of a d ...
of gases * Kinetic theory of gases * Gas transport and pumping *
Vacuum pump A vacuum pump is a device that draws gas molecules from a sealed volume in order to leave behind a partial vacuum. The job of a vacuum pump is to generate a relative vacuum within a capacity. The first vacuum pump was invented in 1650 by Otto ...
s and systems *
Vapour pressure Vapor pressure (or vapour pressure in English-speaking countries other than the US; see spelling differences) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phase ...
Typically, UHV requires: *High pumping speed — possibly multiple
vacuum pump A vacuum pump is a device that draws gas molecules from a sealed volume in order to leave behind a partial vacuum. The job of a vacuum pump is to generate a relative vacuum within a capacity. The first vacuum pump was invented in 1650 by Otto ...
s in series and/or parallel *Minimized surface area in the chamber *High conductance tubing to pumps — short and fat, without obstruction *Use of low-
outgassing Outgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (which ...
materials such as certain stainless steels *Avoid creating pits of trapped gas behind bolts, welding voids, etc. *
Electropolishing Electropolishing, also known as electrochemical polishing, anodic polishing, or electrolytic polishing (especially in the metallography field), is an electrochemical process that removes material from a metallic workpiece, reducing the surface roug ...
of all metal parts after machining or welding *Use of low vapor pressure materials (ceramics, glass, metals, teflon if unbaked) *Baking of the system to remove water or hydrocarbons
adsorbed Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which a ...
to the walls *Chilling of chamber walls to cryogenic temperatures during use *Avoiding all traces of hydrocarbons, including skin oils in a fingerprint — always use gloves
Hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
are the most common background gases in a well-designed, well-baked UHV system. Both Hydrogen and CO diffuse out from the
grain boundaries In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal ...
in stainless steel. Helium could diffuse through the steel and glass from the outside air, but this effect is usually negligible due to the low abundance of He in the atmosphere.


Measurement


Pressure

Measurement of high vacuum is done using a ''nonabsolute gauge'' that measures a pressure-related property of the vacuum, for example, its thermal conductivity. See, for example, Pacey. These gauges must be calibrated. The gauges capable of measuring the lowest pressures are magnetic gauges based upon the pressure dependence of the current in a spontaneous gas discharge in intersecting electric and magnetic fields. UHV pressures are measured with an
ion gauge Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressur ...
, either of the hot filament or inverted magnetron type.


Leak rate

In any vacuum system, some gas will continue to escape into the chamber over time and slowly increase the pressure if it is not pumped out. This leak rate is usually measured in mbar L/s or torr L/s. While some gas release is inevitable, if the leak rate is too high, it can slow down or even prevent the system from reaching low pressure. There are a variety of possible reasons for an increase in pressure. These include simple air leaks, virtual leaks, and
desorption Desorption is the physical process where a previously adsorbed substance is released from a surface. This happens when a molecule gains enough energy to overcome the activation barrier of the bounding energy that keeps it in the surface. There ...
(either from surfaces or volume). A variety of methods for leak detection exist. Large leaks can be found by pressurizing the chamber, and looking for bubbles in soapy water, while tiny leaks can require more sensitive methods, up to using a
tracer gas A tracer-gas leak testing method is a nondestructive testing method that detects gas leaks. A variety of methods with different sensitivities exist. Tracer-gas leak testing is used in the petrochemical industry, the automotive industry, and in the ...
and specialized
Helium mass spectrometer A helium mass spectrometer is an instrument commonly used to detect and locate small leaks. It was initially developed in the Manhattan Project during World War II to find extremely small leaks in the gas diffusion process of uranium enrichment pl ...
.


Outgassing

Outgassing Outgassing (sometimes called offgassing, particularly when in reference to indoor air quality) is the release of a gas that was dissolved, trapped, frozen, or absorbed in some material. Outgassing can include sublimation and evaporation (which ...
is a problem for UHV systems. Outgassing can occur from two sources: surfaces and bulk materials. Outgassing from bulk materials is minimized by selection of materials with low vapor pressures (such as glass, stainless steel, and
ceramic A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
s) for everything inside the system. Materials which are not generally considered absorbent can outgas, including most plastics and some metals. For example, vessels lined with a highly gas-permeable material such as
palladium Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself na ...
(which is a high-capacity
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
sponge) create special outgassing problems. Outgassing from surfaces is a subtler problem. At extremely low pressures, more gas molecules are adsorbed on the walls than are floating in the chamber, so the total surface area inside a chamber is more important than its volume for reaching UHV. Water is a significant source of outgassing because a thin layer of water vapor rapidly adsorbs to everything whenever the chamber is opened to air. Water evaporates from surfaces too slowly to be fully removed at room temperature, but just fast enough to present a continuous level of background contamination. Removal of water and similar gases generally requires baking the UHV system at while vacuum pumps are running. During chamber use, the walls of the chamber may be chilled using liquid nitrogen to reduce outgassing further.


Bake-out

In order to reach low pressures, it is often useful to heat the entire system above for many hours (a process known as bake-out) to remove water and other trace gases which adsorb on the surfaces of the chamber. This may also be required upon "cycling" the equipment to atmosphere. This process significantly speeds up the process of outgassing, allowing low pressures to be reached much faster. After baking, to prevent humidity from getting back into the system after it is exposed to atmospheric pressure, a nitrogen gas flow that creates a small positive pressure can be maintained to keep the system dry.


System design


Pumping

There is no single
vacuum pump A vacuum pump is a device that draws gas molecules from a sealed volume in order to leave behind a partial vacuum. The job of a vacuum pump is to generate a relative vacuum within a capacity. The first vacuum pump was invented in 1650 by Otto ...
that can operate all the way from atmospheric pressure to ultra-high vacuum. Instead, a series of different pumps is used, according to the appropriate pressure range for each pump. In the first stage, a roughing pump clears most of the gas from the chamber. This is followed by one or more vacuum pumps that operate at low pressures. Pumps commonly used in this second stage to achieve UHV include: *
Turbomolecular pump A turbomolecular pump is a type of vacuum pump, superficially similar to a turbopump, used to obtain and maintain high vacuum. These pumps work on the principle that gas molecules can be given momentum in a desired direction by repeated collisi ...
s (especially compound pumps which incorporate a molecular drag section and/or
magnetic bearing A magnetic bearing is a type of bearing that supports a load using magnetic levitation. Magnetic bearings support moving parts without physical contact. For instance, they are able to levitate a rotating shaft and permit relative motion with v ...
types) * Ion pumps * Titanium sublimation pumps * Non-evaporable getter (NEG) pumps *
Cryopump A cryopump or a "cryogenic pump" is a vacuum pump that traps gases and vapours by condensing them on a cold surface, but are only effective on some gases. The effectiveness depends on the freezing and boiling points of the gas relative to the cryop ...
s * Diffusion pumps, especially when used with a cryogenic trap designed to minimize backstreaming of pump oil into the systems. Turbo pumps and diffusion pumps rely on supersonic attack upon system molecules by the blades and high speed vapor stream, respectively.


Airlocks

To save time, energy, and integrity of the UHV volume an
airlock An airlock, air-lock or air lock, often abbreviated to just lock, is a compartment with doors which can be sealed against pressure which permits the passage of people and objects between environments of differing pressure or atmospheric compo ...
or load-lock vacuum system is often used. The airlock volume has one door or valve, such as a
gate valve A gate valve, also known as a sluice valve, is a valve that opens by lifting a barrier (gate) out of the path of the fluid. Gate valves require very little space along the pipe axis and hardly restrict the flow of fluid when the gate is fully ope ...
or UHV angle valve, facing the UHV side of the volume, and another door against atmospheric pressure through which samples or workpieces are initially introduced. After sample introduction and assuring that the door against atmosphere is closed, the airlock volume is typically pumped down to a medium-high vacuum. In some cases the workpiece itself is baked out or otherwise pre-cleaned under this medium-high vacuum. The gateway to the UHV chamber is then opened, the workpiece transferred to the UHV by robotic means or by other contrivance if necessary, and the UHV valve re-closed. While the initial workpiece is being processed under UHV, a subsequent sample can be introduced into the airlock volume, pre-cleaned, and so-on and so-forth, saving much time. Although a "puff" of gas is generally released into the UHV system when the valve to the airlock volume is opened, the UHV system pumps can generally snatch this gas away before it has time to adsorb onto the UHV surfaces. In a system well designed with suitable airlocks, the UHV components seldom need bakeout and the UHV may improve over time even as workpieces are introduced and removed.


Seals

Metal seals, with knife edges on both sides cutting into a soft, copper gasket are employed. This metal-to-metal seal can maintain pressures down to . Although generally considered single use, the skilled operator can obtain several uses through the use of feeler gauges of decreasing size with each iteration, as long as the knife edges are in perfect condition. For SRF cavities, indium seals are more commonly used in sealing two flat surfaces together using clamps to bring the surfaces together. The clamps need to be tightened slowly to ensure the indium seals compress uniformly all around.


Material limitations

Many common materials are used sparingly if at all due to high vapor pressure, high adsorptivity or absorptivity resulting in subsequent troublesome outgassing, or high permeability in the face of differential pressure (i.e.: "through-gassing"): * The majority of
organic compounds In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The s ...
cannot be used: ** Plastics, other than PTFE and PEEK: plastics in other uses are replaced with
ceramics A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain ...
or metals. Limited use of fluoroelastomers (such as Viton) and perfluoroelastomers (such as Kalrez) as gasket materials can be considered if metal gaskets are inconvenient, though these polymers can be expensive. Although through-gassing of elastomerics can not be avoided, experiments have shown that slow out-gassing of water vapor is, initially at least, the more important limitation. This effect can be minimized by pre-baking under medium vacuum. When selecting O-rings, permeation rate and permeation coefficients need to be considered. For example the penetration rate of nitrogen in Viton seals is 100 times lower than the penetration of nitrogen in silicon seals, which impacts the ultimate vacuum that can be achieved. ** Glues: special glues for high vacuum must be used, generally epoxies with a high mineral filler content. Among the most popular of these include asbestos in the formulation. This allows for an epoxy with good initial properties and able to retain reasonable performance across multiple bake-outs. * Some
steels Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant t ...
: due to oxidization of carbon steel, which greatly increases adsorption area, only stainless steel is used. Particularly, non-leaded and low-sulfur
austenitic Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 ...
grades such as 304 and
316 __NOTOC__ Year 316 (Roman numerals, CCCXVI) was a leap year starting on Sunday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Sabinus and Rufinus (or, less frequently, y ...
are preferred. These steels include at least 18% chromium and 8% nickel. Variants of stainless steel include low-carbon grades (such as 304L and 316L), and grades with additives such as niobium and molybdenum to reduce the formation of
chromium carbide Chromium(II) carbide is a ceramic compound that exists in several chemical compositions: Cr3C2, Cr7C3, and Cr23C6. At standard conditions it exists as a gray solid. It is extremely hard and corrosion resistant. It is also a refractory compound, ...
(which provides no corrosion resistance). Common designations include 316L (low carbon), and 316LN (low carbon with nitrogen), which can boast a significantly lower magnetic permeability with special welding techniques making them preferable for
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
applications. Chromium carbide precipitation at the
grain boundaries In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal ...
can render a stainless steel less resistant to oxidation. *
Lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
: Soldering is performed using
lead-free solder Solder (; NA: ) is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable ...
. Occasionally pure lead is used as a gasket material between flat surfaces in lieu of a copper/knife edge system. *
Indium Indium is a chemical element with the symbol In and atomic number 49. Indium is the softest metal that is not an alkali metal. It is a silvery-white metal that resembles tin in appearance. It is a post-transition metal that makes up 0.21 parts ...
: Indium is sometimes used as a deformable gasket material for vacuum seals, especially in cryogenic apparatus, but its low melting point prevents use in baked systems. In a more esoteric application, the low melting point of Indium is taken advantage of as a renewable seal in high vacuum valves. These valves are used several times, generally with the aid of a torque wrench set to increasing torque with each iteration. When the indium seal is exhausted, it is melted and reforms itself and thus is ready for another round of uses. *
Zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
,
cadmium Cadmium is a chemical element with the symbol Cd and atomic number 48. This soft, silvery-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Like zinc, it demonstrates oxidation state +2 in most of ...
: High vapor pressures during system bake-out virtually preclude their use. *Aluminum: Although aluminum itself has a vapor pressure which makes it unsuitable for use in UHV systems, the same oxides which protect aluminum against corrosion improve its characteristics under UHV. Although initial experiments with aluminum suggested milling under mineral oil to maintain a thin, consistent layer of oxide, it has become increasingly accepted that aluminum is a suitable UHV material without special preparation. Paradoxically, aluminum oxide, especially when embedded as particles in stainless steel as for example from sanding in an attempt to reduce the surface area of the steel, is considered a problematic contaminant. * Cleaning is very important for UHV. Common cleaning procedures include degreasing with detergents,
organic solvents A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for p ...
, or chlorinated hydrocarbons.
Electropolishing Electropolishing, also known as electrochemical polishing, anodic polishing, or electrolytic polishing (especially in the metallography field), is an electrochemical process that removes material from a metallic workpiece, reducing the surface roug ...
is often used to reduce the surface area from which adsorbed gases can be emitted. Etching of stainless steel using hydrofluoric and nitric acid forms a chromium rich surface, followed by a nitric acid passivation step, which forms a chromium oxide rich surface. This surface retards the diffusion of hydrogen into the chamber. Technical limitations: * Screws: Threads have a high surface area and tend to "trap" gases, and therefore, are avoided. Blind holes are especially avoided, due to the trapped gas at the base of the screw and slow venting through the threads, which is commonly known as a "virtual leak". This can be mitigated by designing components to include through-holes for all threaded connections, or by using vented screws (which have a hole drilled through their central axis or a notch along the threads). Vented Screws allow trapped gases to flow freely from the base of the screw, eliminating virtual leaks and speeding up the pump-down process. *
Welding Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as bra ...
: Processes such as
gas metal arc welding Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which hea ...
and
shielded metal arc welding Shielded metal arc welding (SMAW), also known as manual metal arc welding (MMA or MMAW), flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the we ...
cannot be used, due to the deposition of impure material and potential introduction of voids or porosity.
Gas tungsten arc welding Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atm ...
(with an appropriate heat profile and properly selected filler material) is necessary. Other clean processes, such as
electron beam welding Electron-beam welding (EBW) is a fusion welding process in which a beam of high-velocity electrons is applied to two materials to be joined. The workpieces melt and flow together as the kinetic energy of the electrons is transformed into heat u ...
or
laser beam welding Laser beam welding (LBW) is a welding technique used to join pieces of metal or thermoplastics through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates. The process is frequen ...
, are also acceptable; however, those that involve potential slag inclusions (such as
submerged arc welding Submerged arc welding (SAW) is a common arc welding process. The first SAW patent was taken out in 1935. The process requires a continuously fed consumable solid or tubular (metal cored) electrode. The molten weld and the arc zone are protec ...
and flux-cored arc welding) are obviously not. To avoid trapping gas or high vapor pressure molecules, welds must fully penetrate the joint or be made from the interior surface, otherwise a virtual leak might appear.


UHV manipulator

A UHV manipulator allows an object which is inside a vacuum chamber and under vacuum to be mechanically positioned. It may provide rotary motion, linear motion, or a combination of both. The most complex devices give motion in three axes and rotations around two of those axes. To generate the mechanical movement inside the chamber, three basic mechanisms are commonly employed: a mechanical coupling through the vacuum wall (using a vacuum-tight seal around the coupling: a welded metal bellows for example), a magnetic coupling that transfers motion from air-side to vacuum-side: or a sliding seal using special greases of very low vapor pressure or ferromagnetic fluid. Such special greases can exceed USD $400 per kilogram. Various forms of motion control are available for manipulators, such as knobs, handwheels, motors, stepping motors, piezoelectric motors, and pneumatics. The use of motors in a vacuum environment often requires special design or other special considerations, as the convective cooling taken for granted under atmospheric conditions is not available in a UHV environment. The manipulator or sample holder may include features that allow additional control and testing of a sample, such as the ability to apply heat, cooling, voltage, or a magnetic field. Sample heating can be accomplished by electron bombardment or thermal radiation. For electron bombardment, the sample holder is equipped with a filament which emits electrons when biased at a high negative potential. The impact of the electrons bombarding the sample at high energy causes it to heat. For thermal radiation, a filament is mounted close to the sample and resistively heated to high temperature. The infrared energy from the filament heats the sample.


Typical uses

Ultra-high vacuum is necessary for many surface analytic techniques such as: *
X-ray photoelectron spectroscopy X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique based on the photoelectric effect that can identify the elements that exist within a material (elemental composition) or are covering its surface, ...
(XPS) * Auger electron spectroscopy (AES) *
Secondary ion mass spectrometry Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. ...
(SIMS) * Thermal desorption spectroscopy (TPD) *
Thin film A thin film is a layer of material ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
growth and preparation techniques with stringent requirements for purity, such as
molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the devel ...
(MBE), UHV chemical vapor deposition (CVD), atomic layer deposition (ALD) and UHV
pulsed laser deposition Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited. This material is vaporized from the ...
(PLD) *
Angle resolved photoemission spectroscopy Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoelec ...
(ARPES) * Field emission microscopy and
Field ion microscopy The Field ion microscope (FIM) was invented by Müller in 1951. It is a type of microscope that can be used to image the arrangement of atoms at the surface of a sharp metal tip. On October 11, 1955, Erwin Müller and his Ph.D. student, Kanwar ...
* Atom Probe Tomography (APT) UHV is necessary for these applications to reduce surface contamination, by reducing the number of molecules reaching the sample over a given time period. At , it only takes 1 second to cover a surface with a contaminant, so much lower pressures are needed for long experiments. UHV is also required for: *
Particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s The Large Hadron Collider (LHC) has three UH vacuum systems. The lowest pressure is found in the pipes the proton beam speeds through near the interaction (collision) points. Here helium cooling pipes also act as cryopumps. The maximum allowable pressure is *
Gravitational wave detector A gravitational-wave detector (used in a gravitational-wave observatory) is any device designed to measure tiny distortions of spacetime called gravitational waves. Since the 1960s, various kinds of gravitational-wave detectors have been built ...
s such as
LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large ...
,
VIRGO Virgo may refer to: *Virgo (astrology), the sixth astrological sign of the zodiac * Virgo (constellation), a constellation *Virgo Cluster, a cluster of galaxies in the constellation Virgo *Virgo Stellar Stream, remains of a dwarf galaxy * Virgo Su ...
, GEO 600, and TAMA 300. The
LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large ...
experimental apparatus is housed in a vacuum chamber at in order to eliminate temperature fluctuations and sound waves which would jostle the mirrors far too much for gravitational waves to be sensed. * Atomic physics experiments which use cold atoms, such as
ion trap An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in phy ...
ping or making
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.6 ...
s. While not compulsory, it can prove beneficial in applications such as: *
Molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the devel ...
, E-beam evaporation,
sputtering In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and ca ...
and other deposition techniques. * Atomic force microscopy. High vacuum enables high Q factors on the cantilever oscillation. *
Scanning tunneling microscopy A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. ...
. High vacuum reduces oxidation and contamination, hence enables imaging and the achievement of atomic resolution on clean metal and
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
surfaces, e.g. imaging the
surface reconstruction Surface reconstruction refers to the process by which atoms at the surface of a crystal assume a different structure than that of the bulk. Surface reconstructions are important in that they help in the understanding of surface chemistry for variou ...
of the unoxidized
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
surface. *
Electron-beam lithography Electron-beam lithography (often abbreviated as e-beam lithography, EBL) is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron b ...


See also

*
Vacuum engineering Vacuum engineering deals with technological processes and equipment that use vacuum to achieve better results than those run under atmospheric pressure. The most widespread applications of vacuum technology are: * Pyrolytic chromium carbide coatin ...
*
Vacuum gauge {{Cat main, Vacuum system Vacuum Systems A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boun ...
* Journal of Vacuum Science and Technology *
Vacuum state In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The word zero-point field is sometimes used as ...
*
Orders of magnitude (pressure) This is a tabulated listing of the orders of magnitude in relation to pressure expressed in pascals. References {{Orders of magnitude Units of pressure Pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to ...


References


External links


Online Surface Science Course
{{Authority control Vacuum systems Vacuum