treatment of sewage
   HOME

TheInfoList



OR:

Sewage treatment (or domestic wastewater treatment, municipal wastewater treatment) is a type of wastewater treatment which aims to remove
contaminants Contamination is the presence of a constituent, impurity, or some other undesirable element that spoils, corrupts, infects, makes unfit, or makes inferior a material, physical body, natural environment, workplace, etc. Types of contamination ...
from sewage to produce an effluent that is suitable for discharge to the surrounding environment or an intended reuse application, thereby preventing
water pollution Water pollution (or aquatic pollution) is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. ...
from raw sewage discharges. Sewage contains
wastewater Wastewater is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of domestic, industrial ...
from households and businesses and possibly pre-treated
industrial wastewater Industrial wastewater treatment describes the processes used for Wastewater treatment, treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater (or effluent) may be reuse ...
. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems (including on-site treatment systems) to large centralized systems involving a network of pipes and pump stations (called sewerage) which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry
urban runoff Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces (roads, parking lots and sidewalks) are constructed during land development. During rain , storms and other precip ...
(stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and
secondary treatment Secondary treatment is the removal of biodegradable organic matter (in solution or suspension) from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the inte ...
, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter (measured as biological oxygen demand) from sewage,  using aerobic or anaerobic biological processes. A large number of sewage treatment technologies have been developed, mostly using biological treatment processes. Engineers and decision makers need to take into account technical and economical criteria, as well as quantitative and qualitative aspects of each alternative when choosing a suitable technology. Often, the main criteria for selection are: desired effluent quality, expected construction and operating costs, availability of land, energy requirements and sustainability aspects. In
developing countries A developing country is a sovereign state with a lesser developed industrial base and a lower Human Development Index (HDI) relative to other countries. However, this definition is not universally agreed upon. There is also no clear agreem ...
and in rural areas with low population densities, sewage is often treated by various on-site sanitation systems and not conveyed in sewers. These systems include septic tanks connected to drain fields, on-site sewage systems (OSS),
vermifilter A vermifilter (also vermi-digester or lumbrifilter) is an aerobic treatment system, consisting of a Bioreactor, biological reactor containing media that filters Organic matter, organic material from wastewater. The media also provides a habitat f ...
systems and many more. On the other hand, advanced and relatively expensive sewage treatment plants in cities that can afford them may include tertiary treatment with disinfection and possibly even a fourth treatment stage to remove micropollutants. At the global level, an estimated 52% of sewage is treated. However, sewage treatment rates are highly unequal for different countries around the world. For example, while high-income countries treat approximately 74% of their sewage, developing countries treat an average of just 4.2%. The treatment of sewage is part of the field of
sanitation Sanitation refers to public health conditions related to clean drinking water and treatment and disposal of human excreta and sewage. Preventing human contact with feces is part of sanitation, as is hand washing with soap. Sanitation syste ...
. Sanitation also includes the management of human waste and solid waste as well as stormwater (drainage) management. The term "sewage treatment plant" is often used interchangeably with the term "wastewater treatment plant".


Terminology

The term "sewage treatment plant" (STP) (or "sewage treatment works" in some countries) is nowadays often replaced with the term wastewater treatment plant (WWTP). Strictly speaking, the latter is a broader term that can also refer to industrial wastewater. The terms "water recycling center" or "water reclamation plants" are also in use.


Purposes and overview

The overall aim of treating sewage is to produce an effluent that can be discharged to the environment while causing as little
water pollution Water pollution (or aquatic pollution) is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. ...
as possible, or to produce an effluent that can be reused in a useful manner. This is achieved by removing contaminants from the sewage. It is a form of
waste management Waste management or waste disposal includes the processes and actions required to manage waste from its inception to its final disposal. This includes the collection, transport, treatment and disposal of waste, together with monitorin ...
. With regards to biological treatment of sewage, the treatment objectives can include various degrees of the following: transform dissolved and particulate biodegradable components (especially organic matter) into acceptable end products, transform and remove nutrients (nitrogen and phosphorus), remove or inactivate pathogenic organisms, and remove specific trace organic constituents (micropollutants). Some types of sewage treatment produce
sewage sludge Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term " septage" also refers to sludge from simple wastewater treatment but is connected to s ...
which can be treated before safe disposal or reuse. Under certain circumstances, the treated sewage sludge might be termed "
biosolids Biosolids are solid organic matter recovered from a sewage treatment process and used as fertilizer. In the past, it was common for farmers to use animal manure to improve their soil fertility. In the 1920s, the farming community began also to use ...
" and can be used as a
fertilizer A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
.


Sewage characteristics


Collection


Types of treatment processes

Sewage can be treated close to where the sewage is created, which may be called a "decentralized" system or even an "on-site" system ( on-site sewage facility,
septic tank A septic tank is an underground chamber made of concrete, fiberglass, or plastic through which domestic wastewater ( sewage) flows for basic sewage treatment. Settling and anaerobic digestion processes reduce solids and organics, but the treatm ...
s, etc.). Alternatively, sewage can be collected and transported by a network of pipes and pump stations to a municipal treatment plant. This is called a "centralized" system (see also sewerage and pipes and infrastructure). A large number of sewage treatment technologies have been developed, mostly using biological treatment processes (see
list of wastewater treatment technologies This page consists of a list of wastewater treatment technologies: See also *Agricultural wastewater treatment *Industrial wastewater treatment *List of solid waste treatment technologies * Waste treatment technologies *Water purification *Sewa ...
). Very broadly, they can be grouped into high tech (high cost) versus low tech (low cost) options, although some technologies might fall into either category. Other grouping classifications are "intensive" or "mechanized" systems (more compact, and frequently employing high tech options) versus "extensive" or "natural" or " nature-based" systems (usually using natural treatment processes and occupying larger areas) systems. This classification may be sometimes oversimplified, because a treatment plant may involve a combination of processes, and the interpretation of the concepts of high tech and low tech, intensive and extensive, mechanized and natural processes may vary from place to place.


Low tech, extensive or nature-based processes

Examples for more low-tech, "natural", often less expensive sewage treatment systems are shown below. They often use little or no energy. Some of these systems do not provide a high level of treatment, or only treat part of the sewage (for example only the toilet wastewater), or they only provide pre-treatment, like septic tanks. On the other hand, some systems are capable of providing a good performance, satisfactory for several applications. Many of these systems are based on natural treatment processes, requiring large areas, while others are more compact. In most cases, they are used in rural areas or in small to medium-sized communities. For example, waste stabilization ponds are a low cost treatment option with practically no energy requirements but they require a lot of land. Due to their technical simplicity, most of the savings (compared with high tech systems) are in terms of operation and maintenance costs. *
Anaerobic digester types The following is a partial list of types of anaerobic digesters. These processes and systems harness anaerobic digestion for purposes such as treatment of biowaste, animal manure, sewage and biogas generation. Anaerobic digesters can be categorize ...
and
anaerobic digestion Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to Waste management, manage waste or to produce fuels. Mu ...
, for example: ** Upflow anaerobic sludge blanket reactor **
Septic tank A septic tank is an underground chamber made of concrete, fiberglass, or plastic through which domestic wastewater ( sewage) flows for basic sewage treatment. Settling and anaerobic digestion processes reduce solids and organics, but the treatm ...
**
Imhoff tank The Imhoff tank, named for German engineer Karl Imhoff (1876–1965), is a chamber suitable for the reception and processing of sewage. It may be used for the clarification of sewage by simple settling and sedimentation, along with anaerobic dige ...
*
Constructed wetland A constructed wetland is an artificial wetland to treat sewage, greywater, stormwater runoff or industrial wastewater. It may also be designed for land reclamation after mining, or as a mitigation step for natural areas lost to land development ...
(see also
biofilters Biofiltration is a pollution control technique using a bioreactor containing living material to capture and biologically degrade pollutants. Common uses include processing waste water, capturing harmful chemicals or silt from surface runoff, an ...
) *
Decentralized wastewater system Decentralized wastewater systems (also referred to as decentralized wastewater treatment systems) convey, treat and dispose or reuse wastewater from small and low-density communities, buildings and dwellings in remote areas, individual public or ...
*
Nature-based solutions The term Nature-based solutions (NBS) refers to the sustainable management and use of natural features and processes to tackle socio-environmental challenges. These challenges include issues such as climate change ( mitigation and adaptation), ...
* On-site sewage facility *
Sand filter Sand filters are used as a step in the water treatment process of water purification. There are three main types; rapid (gravity) sand filters, upward flow sand filters and slow sand filters. All three methods are used extensively in the water i ...
*
Vermifilter A vermifilter (also vermi-digester or lumbrifilter) is an aerobic treatment system, consisting of a Bioreactor, biological reactor containing media that filters Organic matter, organic material from wastewater. The media also provides a habitat f ...
*
Waste stabilization pond Waste stabilization ponds (WSPs or stabilization ponds or waste stabilization lagoons) are ponds designed and built for wastewater treatment to reduce the organic content and remove pathogens from wastewater. They are man-made depressions confine ...
with sub-types: ** Facultative ponds ** Anaerobic pond – facultative ponds systems ** Facultative aerated lagoons ** Complete-mix aerated lagoon sedimentation pond systems ** High rate ponds ** Maturation ponds Examples for systems that can provide full or partial treatment for toilet wastewater only: *
Composting toilet A composting toilet is a type of dry toilet that treats human waste by a biological process called composting. This process leads to the decomposition of organic matter and turns human waste into compost-like material. Composting is carried out b ...
(see also
dry toilets A dry toilet (or non-flush toilet, no flush toilet or toilet without a flush) is a toilet which, unlike a flush toilet, does not use flush water. Dry toilets do not use water to move excreta along or block odors. They do not produce sewage, and a ...
in general) *
Urine-diverting dry toilet A urine-diverting dry toilet (UDDT) is a type of dry toilet with urine diversion that can be used to provide safe, affordable sanitation in a variety of contexts worldwide. The separate collection of feces and urine without any flush water has ma ...
* Vermifilter toilet


High tech, intensive or mechanized processes

Examples for more high-tech, intensive or "mechanized", often relatively expensive sewage treatment systems are listed below. Some of them are energy intensive as well. Many of them provide a very high level of treatment. For example, broadly speaking, the
activated sludge The activated sludge process is a type of biological wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa. It uses air (or oxygen) and microorganism ...
process achieves a high effluent quality but is relatively expensive and energy intensive. * Activated sludge systems * Aerobic granulation *
Aerobic treatment system An aerobic treatment system (ATS), often called an aerobic septic system, is a small scale sewage treatment system similar to a septic tank system, but which uses an Cellular respiration, aerobic process for digestion rather than just the Fermentat ...
*
Enhanced biological phosphorus removal Enhanced biological phosphorus removal (EBPR) is a sewage treatment configuration applied to activated sludge systems for the removal of phosphate. The common element in EBPR implementations is the presence of an anaerobic tank (nitrate and oxygen ...
*
Expanded granular sludge bed digestion An expanded granular sludge bed (EGSB) reactor is a variant of the upflow anaerobic sludge blanket digestion (UASB) concept for anaerobic wastewater treatment. The distinguishing feature is that a faster rate of upward-flow velocity is designed f ...
*
Extended aeration Extended aeration is a method of sewage treatment using modified activated sludge procedures. It is preferred for relatively small waste loads, where lower operating efficiency is offset by mechanical simplicity.Steel & McGhee (1979) p.501 Convent ...
* Filtration *
Membrane bioreactor Membrane bioreactor (MBR) is a combination of membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. It is now widely used for municipal and industrial wastewater ...
*
Moving bed biofilm reactor Moving bed biofilm reactor (MBBR) is a type of wastewater treatment process that was first invented by Prof. Hallvard Ødegaard at Norwegian University of Science and Technology in the late 1980s. It was commercialized by Kaldnes Miljöteknolog ...
* Reverse osmosis *
Rotating biological contactor A rotating biological contactor or RBC is a biological fixed-film treatment process used in the secondary treatment of wastewater following primary treatment. The primary treatment process involves removal of grit, sand and coarse suspended mate ...
*
Sequencing batch reactor Sequencing batch reactors (SBR) or sequential batch reactors are a type of activated sludge process for the treatment of wastewater. SBR reactors treat wastewater such as sewage or output from anaerobic digesters or mechanical biological treatmen ...
*
Trickling filter A trickling filter is a type of wastewater treatment system. It consists of a fixed bed of rocks, coke, gravel, slag, polyurethane foam, sphagnum peat moss, ceramic, or plastic media over which sewage or other wastewater flows downward and c ...
*
Ultrafiltration Ultrafiltration (UF) is a variety of membrane filtration in which forces such as pressure or concentration gradients lead to a separation through a semipermeable membrane. Suspended solids and solutes of high molecular weight are retained in the ...
* Ultraviolet disinfection


Disposal or treatment options

There are other process options which may be classified as disposal options, although they can also be understood as basic treatment options. These include: Application of sludge,
irrigation Irrigation (also referred to as watering) is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been devel ...
, soak pit,
leach field Septic drain fields, also called leach fields or leach drains, are subsurface wastewater disposal facilities used to remove contaminants and impurities from the liquid that emerges after anaerobic digestion in a septic tank. Organic materials in ...
, fish pond, floating plant pond, water disposal/
groundwater recharge Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs ...
, surface disposal and storage. Application of sewage to land can be considered as a form of final disposal or of treatment, or both. It leads to groundwater recharge and/or to evapotranspiration. Land application include slow-rate systems, rapid infiltration, subsurface infiltration, overland flow. It is done by flooding, furrows, sprinkler and dripping. It is a treatment/disposal system that requires a large amount of land per person.


Design aspects


Population equivalent

The "per person organic matter load" is a parameter used in the design of sewage treatment plants. This concept is known as
population equivalent Population equivalent (PE) or unit per capita loading, or equivalent person (EP), is a parameter for characterizing industrial wastewaters. It essentially compares the polluting potential of an industry (in terms of biodegradable organic matter) wi ...
(PE). The base value used for PE can vary from one country to another. Commonly used definitions used worldwide are: 1 PE equates to 60 gram of BOD per person per day, and it also equals 200 liters of sewage per day. This concept is also used as a comparison parameter to express the strength of
industrial wastewater Industrial wastewater treatment describes the processes used for Wastewater treatment, treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater (or effluent) may be reuse ...
compared to sewage.


Process selection

When choosing a suitable sewage treatment process, decision makers need to take into account technical and economical criteria, as well as quantitative and qualitative aspects of each alternative. Therefore, each analysis is site-specific. A
life cycle assessment Life cycle assessment or LCA (also known as life cycle analysis) is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case o ...
(LCA) can be used, and criteria or weightings can be attributed to the various aspects. The final decision may have a degree of subjectivity. A range of publications exist to help with technology selection. In industrialized countries, the critical items in process selection are, in decreasing order of importance: efficiency, reliability, sludge disposal aspects and land requirements. In
developing countries A developing country is a sovereign state with a lesser developed industrial base and a lower Human Development Index (HDI) relative to other countries. However, this definition is not universally agreed upon. There is also no clear agreem ...
, the main critical items might be different and revolve more around construction costs, sustainability, simplicity and operational costs. Choosing the most suitable treatment process is complicated and requires expert inputs, often in the form of
feasibility studies A feasibility study is an assessment of the practicality of a project or system. A feasibility study aims to objectively and rationally uncover the strengths and weaknesses of an existing business or proposed venture, opportunities and threats pr ...
. This is because the main important factors to be considered when evaluating and selecting sewage treatment processes are numerous: process applicability, applicable flow, acceptable flow variation, influent characteristics, inhibiting or refractory compounds, climatic aspects, process kinetics and reactor
hydraulics Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counte ...
, performance, treatment residuals, sludge processing, environmental constraints, chemical product requirements, energy requirements, requirements of other resources, personnel requirements, operating and maintenance requirements, ancillary processes, reliability, complexity, compatibility, area availability. With regards to environmental impacts the following aspects are included in the selection process: Odors,
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
attraction, sludge transportation, sanitary risks, air contamination, soil and subsoil contamination, surface water pollution or groundwater contamination, devaluation of nearby areas, inconvenience to the nearby population.


Odor control

Odors emitted by sewage treatment are typically an indication of an anaerobic or "septic" condition. Early stages of processing will tend to produce foul-smelling gases, with hydrogen sulfide being most common in generating complaints. Large process plants in urban areas will often treat the odors with carbon reactors, a contact media with bio-slimes, small doses of
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
, or circulating fluids to biologically capture and metabolize the noxious gases. Other methods of odor control exist, including addition of iron salts,
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3% ...
,
calcium nitrate Calcium nitrate, also called ''Norgessalpeter'' (Norwegian salpeter), is an inorganic compound with the formula Ca(NO3)2(H2O)x. The anhydrous compound, which is rarely encountered, absorbs moisture from the air to give the tetrahydrate. Both anhyd ...
, etc. to manage hydrogen sulfide levels.


Energy requirements

The energy requirements vary with type of treatment process as well as sewage strength. For example, constructed wetlands and stabilization ponds have low energy requirements, associated mainly with the occasional presence of pumps and other equipment. On the other hand, the activated sludge process includes an aeration step, which is highly energy consuming. Sewage treatment plants that produce biogas in their
sewage sludge treatment Sewage sludge treatment describes the processes used to manage and dispose of sewage sludge produced during sewage treatment. Sludge treatment is focused on reducing sludge weight and volume to reduce transportation and disposal costs, and on red ...
process with
anaerobic digestion Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to Waste management, manage waste or to produce fuels. Mu ...
can produce enough energy to meet most of the energy needs of the sewage treatment plant itself. For activated sludge treatment plants in the United States, around 30 percent of the annual operating costs is usually required for energy. Most of this electricity is used for aeration, pumping systems and equipment for the dewatering and drying of
sewage sludge Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term " septage" also refers to sludge from simple wastewater treatment but is connected to s ...
. Advanced sewage treatment plants, e.g. for nutrient removal, require more energy than plants that only achieve primary or secondary treatment. Small rural plants using trickling filters may operate with no net energy requirements, the whole process being driven by gravitational flow, including tipping bucket flow distribution and the desludging of settlement tanks to drying beds. This is usually only practical in hilly terrain and in areas where the treatment plant is relatively remote from housing because of the difficulty in managing odors.


Co-treatment of industrial effluent

In highly regulated developed countries, industrial wastewater usually receives at least pretreatment if not full treatment at the factories themselves to reduce the pollutant load, before discharge to the sewer. The pretreatment has the following aims: to remove constituents that may pose risks to the sewerage system and its workers; prevent toxic or inhibitory compounds to the microorganisms in the biological stage in the municipal treatment plant; hinder beneficial use of the produced sewage sludge; or that will still be present in the final effluent from the treatment plant. Some industrial wastewater may contain pollutants which cannot be removed by sewage treatment plants. Also, variable flow of industrial waste associated with production cycles may upset the population dynamics of biological treatment units.


Design aspects of secondary treatment processes


Non-sewered areas

Urban residents in many parts of the world rely on on-site sanitation systems without sewers, such as septic tanks and
pit latrines A pit latrine, also known as pit toilet, is a type of toilet that collects human feces in a hole in the ground. Urine and feces enter the pit through a drop hole in the floor, which might be connected to a toilet seat or squatting pan for user ...
, and
fecal sludge management Fecal sludge management (FSM) (or faecal sludge management in British English) is the storage, collection, transport, treatment and safe end use or disposal of fecal sludge. Together, the collection, transport, treatment and end use of fecal slud ...
in these cities is an enormous challenge. For sewage treatment the use of septic tanks and other on-site sewage facilities (OSSF) is widespread in some rural areas, for example serving up to 20 percent of the homes in the U.S.


Available process steps

Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes. Different types of sewage treatment may utilize some or all of the process steps listed below.


Preliminary treatment

Preliminary treatment (sometimes called pretreatment) removes coarse materials that can be easily collected from the raw sewage before they damage or clog the pumps and sewage lines of primary treatment
clarifier Clarifiers are settling tanks built with mechanical means for continuous removal of solids being deposited by sedimentation. A clarifier is generally used to remove solid particulates or suspended solids from liquid for clarification and/or thi ...
s.


Screening

The influent in sewage water passes through a bar screen to remove all large objects like cans, rags, sticks, plastic packets, etc. carried in the sewage stream. This is most commonly done with an automated mechanically raked bar screen in modern plants serving large populations, while in smaller or less modern plants, a manually cleaned screen may be used. The raking action of a mechanical bar screen is typically paced according to the accumulation on the bar screens and/or flow rate. The solids are collected and later disposed in a landfill, or incinerated. Bar screens or mesh screens of varying sizes may be used to optimize solids removal. If gross solids are not removed, they become entrained in pipes and moving parts of the treatment plant, and can cause substantial damage and inefficiency in the process.EPA. Washington, DC (2004)
"Primer for Municipal Waste water Treatment Systems."
Document no. EPA 832-R-04-001.


Grit removal

Grit consists of
sand Sand is a granular material composed of finely divided mineral particles. Sand has various compositions but is defined by its grain size. Sand grains are smaller than gravel and coarser than silt. Sand can also refer to a textural class o ...
, gravel, rocks, and other heavy materials. Preliminary treatment may include a sand or grit removal channel or chamber, where the velocity of the incoming sewage is reduced to allow the settlement of grit. Grit removal is necessary to (1) reduce formation of deposits in primary sedimentation tanks, aeration tanks, anaerobic digesters, pipes, channels, etc. (2) reduce the frequency of tank cleaning caused by excessive accumulation of grit; and (3) protect moving mechanical equipment from abrasion and accompanying abnormal wear. The removal of grit is essential for equipment with closely machined metal surfaces such as comminutors, fine screens, centrifuges, heat exchangers, and high pressure diaphragm pumps. Grit chambers come in three types: horizontal grit chambers, aerated grit chambers, and vortex grit chambers. Vortex grit chambers include mechanically induced vortex, hydraulically induced vortex, and multi-tray vortex separators. Given that traditionally, grit removal systems have been designed to remove clean inorganic particles that are greater than , most of the finer grit passes through the grit removal flows under normal conditions. During periods of high flow deposited grit is resuspended and the quantity of grit reaching the treatment plant increases substantially. It is therefore important that the grit removal system not only operates efficiently during normal flow conditions but also under sustained peak flows when the greatest volume of grit reaches the plant.


Flow equalization

Equalization basins can be used to achieve flow equalization, with the aim to reduce peak dry-weather flows or peak wet-weather flows in the case of combined sewer systems. The benefits are performance improvements of the biological treatment processes, the secondary clarifiers and any effluent filtration equipment. Disadvantages include the basins' capital cost and space requirements. Basins can also provide a place to temporarily hold, dilute and distribute batch discharges of toxic or high-strength wastewater which might otherwise inhibit biological secondary treatment (such was wastewater from portable toilets or fecal sludge that is brought to the sewage treatment plant in vacuum trucks). Flow equalization basins require variable discharge control, typically include provisions for bypass and cleaning, and may also include aerators and odor control.


Fat and grease removal

In some larger plants,
fat In nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such compounds, most commonly those that occur in living beings or in food. The term often refers specifically to triglycerides (triple est ...
and grease are removed by passing the sewage through a small tank where skimmers collect the fat floating on the surface. Air blowers in the base of the tank may also be used to help recover the fat as a froth. Many plants, however, use primary clarifiers with mechanical surface skimmers for fat and grease removal.


Primary treatment

Primary treatment is the "removal of a portion of the suspended solids and organic matter from the sewage".It consists of allowing sewage to pass slowly through a basin where heavy solids can settle to the bottom while oil, grease and lighter solids float to the surface and are skimmed off. These basis are called "primary sedimentation tanks" or "primary
clarifier Clarifiers are settling tanks built with mechanical means for continuous removal of solids being deposited by sedimentation. A clarifier is generally used to remove solid particulates or suspended solids from liquid for clarification and/or thi ...
s" and typically have a hydraulic retention time (HRT) of 1.5 to 2.5 hours. The settled and floating materials are removed and the remaining liquid may be discharged or subjected to secondary treatment. Primary settling tanks are usually equipped with mechanically driven scrapers that continually drive the collected sludge towards a hopper in the base of the tank where it is pumped to sludge treatment facilities. Sewage treatment plants that are connected to a combined sewer system sometimes have a bypass arrangement after the primary treatment unit. This means that during very heavy rainfall events, the secondary and tertiary treatment systems can be bypassed to protect them from hydraulic overloading, and the mixture of sewage and storm-water receives primary treatment only. Primary sedimentation tanks can be expected to remove 50–70% of the suspended solids and 25–40% of the biological oxygen demand (BOD).


Secondary treatment

The main processes involved in secondary sewage treatment are designed to remove as much of the solid material as possible. They use biological processes to digest and remove the remaining soluble material, especially the organic fraction. This can be done with either suspended-growth or biofilm processes. The microorganisms that feed on the organic matter present in the sewage grow and multiply, constituting the biological solids, or biomass. These grow and group together in the form of flocs or biofilms and, in some specific processes, as granules. In several treatment processes, the biological floc or biofilm and remaining fine solids can then be settled as a sludge, leaving a liquid substantially free of solids, and with a greatly reduced concentration of pollutants.
Secondary treatment Secondary treatment is the removal of biodegradable organic matter (in solution or suspension) from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the inte ...
can reduce organic matter (measured as biological oxygen demand) from sewage,  using aerobic or anaerobic processes. The organisms involved in these processes are sensitive to the presence of toxic materials, although these are not expected to be present at high concentrations in typical municipal sewage.


Tertiary treatment

Advanced sewage treatment generally involves three main stages, called primary, secondary and tertiary treatment but may also include intermediate stages and final polishing processes. The purpose of tertiary treatment (also called "advanced treatment") is to provide a final treatment stage to further improve the effluent quality before it is discharged to the receiving water body or reused. More than one tertiary treatment process may be used at any treatment plant. If disinfection is practiced, it is always the final process. It is also called "effluent polishing". Tertiary treatment may include biological nutrient removal (alternatively, this can be classified as secondary treatment), disinfection and removal of micropollutants, such as
environmental persistent pharmaceutical pollutant The term environmental persistent pharmaceutical pollutants (EPPP) was first suggested in the nomination in 2010 of pharmaceuticals and environment as an emerging issue in a Strategic Approach to International Chemicals Management ( SAICM) by t ...
s. Tertiary treatment is sometimes defined as anything more than primary and secondary treatment in order to allow discharge into a highly sensitive or fragile
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
such as
estuaries An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environmen ...
, low-flow rivers or
coral reefs A coral reef is an underwater ecosystem characterized by reef-building corals. Reefs are formed of colonies of coral polyps held together by calcium carbonate. Most coral reefs are built from stony corals, whose polyps cluster in groups. Co ...
. Treated water is sometimes disinfected chemically or physically (for example, by lagoons and
microfiltration Microfiltration is a type of physical filtration process where a contaminated fluid is passed through a special pore-sized membrane filter to separate microorganisms and suspended particles from process liquid. It is commonly used in conjunction ...
) prior to discharge into a stream,
river A river is a natural flowing watercourse, usually freshwater, flowing towards an ocean, sea, lake or another river. In some cases, a river flows into the ground and becomes dry at the end of its course without reaching another body of w ...
, bay,
lagoon A lagoon is a shallow body of water separated from a larger body of water by a narrow landform, such as reefs, barrier islands, barrier peninsulas, or isthmuses. Lagoons are commonly divided into ''coastal lagoons'' (or ''barrier lagoons'') ...
or
wetland A wetland is a distinct ecosystem that is flooded or saturated by water, either permanently (for years or decades) or seasonally (for weeks or months). Flooding results in oxygen-free (anoxic) processes prevailing, especially in the soils. The p ...
, or it can be used for the
irrigation Irrigation (also referred to as watering) is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been devel ...
of a golf course, greenway or park. If it is sufficiently clean, it can also be used for
groundwater recharge Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs ...
or agricultural purposes. Sand filtration removes much of the residual suspended matter. Filtration over activated carbon, also called ''carbon adsorption,'' removes residual
toxin A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849 ...
s.
Micro filtration Microfiltration is a type of physical filtration process where a contaminated fluid is passed through a special porosity, pore-sized membrane filter to separate microorganisms and suspended particles from process fluid, liquid. It is commonly used ...
or synthetic membranes are also used, for example in
membrane bioreactor Membrane bioreactor (MBR) is a combination of membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. It is now widely used for municipal and industrial wastewater ...
s which also remove pathogens. Settlement and further biological improvement of treated sewage may be achieved through storage in large human-made ponds or lagoons. These lagoons are highly aerobic, and colonization by native macrophytes, especially reeds, is often encouraged.


Disinfection

Disinfection A disinfectant is a chemical substance or compound used to inactivate or destroy microorganisms on inert surfaces. Disinfection does not necessarily kill all microorganisms, especially resistant bacterial spores; it is less effective than st ...
of treated sewage may be attempted to kill
pathogens In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a ger ...
(disease-causing microorganisms) prior to disposal, and is increasingly effective after more elements of the foregoing treatment sequence have been completed. The purpose of disinfection in the treatment of sewage is to substantially reduce the number of pathogens in the water to be discharged back into the environment or to be reused. The effectiveness of disinfection depends on the quality of the water being treated (e.g.
turbidity Turbidity is the cloudiness or haziness of a fluid caused by large numbers of individual particles that are generally invisible to the naked eye, similar to smoke in air. The measurement of turbidity is a key test of water quality. Fluids ...
, pH, etc.), the type of disinfection being used, the disinfectant dosage (concentration and time), and other environmental variables. Water with high turbidity will be treated less successfully, since solid matter can shield organisms, especially from
ultraviolet light Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
or if contact times are low. Generally, short contact times, low doses and high flows all militate against effective disinfection. Common methods of disinfection include
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
,
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
,
ultraviolet light Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
, or
sodium hypochlorite Sodium hypochlorite (commonly known in a dilute solution as bleach) is an inorganic chemical compound with the formula NaOCl (or NaClO), comprising a sodium cation () and a hypochlorite anion (or ). It may also be viewed as the sodium s ...
.
Monochloramine Monochloramine, often called chloramine, is the chemical compound with the formula NH2Cl. Together with dichloramine (NHCl2) and nitrogen trichloride (NCl3), it is one of the three chloramines of ammonia. It is a colorless liquid at its melting p ...
, which is used for drinking water, is not used in the treatment of sewage because of its persistence.
Chlorination Chlorination may refer to: * Chlorination reaction In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transform ...
remains the most common form of treated sewage disinfection in many countries due to its low cost and long-term history of effectiveness. One disadvantage is that chlorination of residual organic material can generate chlorinated-organic compounds that may be
carcinogenic A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis (the formation of cancer). This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive subs ...
or harmful to the environment. Residual chlorine or chloramines may also be capable of chlorinating organic material in the natural aquatic environment. Further, because residual chlorine is toxic to aquatic species, the treated effluent must also be chemically dechlorinated, adding to the complexity and cost of treatment.
Ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
(UV) light can be used instead of chlorine, iodine, or other chemicals. Because no chemicals are used, the treated water has no adverse effect on organisms that later consume it, as may be the case with other methods. UV radiation causes damage to the
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
tic structure of bacteria,
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es, and other
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
s, making them incapable of reproduction. The key disadvantages of UV disinfection are the need for frequent lamp maintenance and replacement and the need for a highly treated effluent to ensure that the target microorganisms are not shielded from the UV radiation (i.e., any solids present in the treated effluent may protect microorganisms from the UV light). In many countries, UV light is becoming the most common means of disinfection because of the concerns about the impacts of chlorine in chlorinating residual organics in the treated sewage and in chlorinating organics in the receiving water. As with UV treatment, heat sterilization also does not add chemicals to the water being treated. However, unlike UV, heat can penetrate liquids that are not transparent. Heat disinfection can also penetrate solid materials within wastewater, sterilizing their contents. Thermal effluent decontamination systems provide low resource, low maintenance effluent decontamination once installed.
Ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
() is generated by passing
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
() through a high
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
potential resulting in a third oxygen
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
becoming attached and forming . Ozone is very unstable and reactive and oxidizes most organic material it comes in contact with, thereby destroying many pathogenic microorganisms. Ozone is considered to be safer than chlorine because, unlike chlorine which has to be stored on site (highly poisonous in the event of an accidental release), ozone is generated on-site as needed from the oxygen in the ambient air. Ozonation also produces fewer disinfection by-products than chlorination. A disadvantage of ozone disinfection is the high cost of the ozone generation equipment and the requirements for special operators. Ozone sewage treatment requires the use of an
ozone generator Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
, which decontaminates the water as
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the lo ...
bubbles percolate through the tank. Membranes can also be effective disinfectants, because they act as barriers, avoiding the passage of the microorganisms. As a result, the final effluent may be devoid of pathogenic organisms, depending on the type of membrane used. This principle is applied in
membrane bioreactors Membrane bioreactor (MBR) is a combination of membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. It is now widely used for municipal and industrial wastewate ...
.


Biological nutrient removal

Sewage may contain high levels of the nutrients
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
and
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
. Typical values for nutrient loads per person and nutrient concentrations in raw sewage in
developing countries A developing country is a sovereign state with a lesser developed industrial base and a lower Human Development Index (HDI) relative to other countries. However, this definition is not universally agreed upon. There is also no clear agreem ...
have been published as follows: 8 g/person/d for total nitrogen (45 mg/L), 4.5 g/person/d for
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
-N (25 mg/L) and 1.0 g/person/d for total phosphorus (7 mg/L). The typical ranges for these values are: 6-10 g/person/d for total nitrogen (35-60 mg/L), 3.5-6 g/person/d for ammonia-N (20-35 mg/L) and 0.7-2.5 g/person/d for total phosphorus (4-15 mg/L). Excessive release to the environment can lead to
nutrient pollution Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters (lakes, rivers and coastal waters), in which excess nutrients, usually nitrogen or ...
, which can manifest itself in
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phytopla ...
. This process can lead to
algal bloom An algal bloom or algae bloom is a rapid increase or accumulation in the population of algae in freshwater or marine water systems. It is often recognized by the discoloration in the water from the algae's pigments. The term ''algae'' encompass ...
s, a rapid growth, and later decay, in the population of algae. In addition to causing deoxygenation, some algal species produce toxins that contaminate
drinking water Drinking water is water that is used in drink or food preparation; potable water is water that is safe to be used as drinking water. The amount of drinking water required to maintain good health varies, and depends on physical activity level, a ...
supplies. Ammonia nitrogen, in the form of free ammonia (NH3) is toxic to fish. Ammonia nitrogen, when converted to nitrite and further to nitrate in a water body, in the process of nitrification, is associated with the consumption of dissolved oxygen. Nitrite and nitrate may also have public health significance if concentrations are high in
drinking water Drinking water is water that is used in drink or food preparation; potable water is water that is safe to be used as drinking water. The amount of drinking water required to maintain good health varies, and depends on physical activity level, a ...
, because of a disease called metahemoglobinemia. Phosphorus removal is important as phosphorus is a limiting nutrient for algae growth in many fresh water systems. Therefore, an excess of phosphorus can lead to eutrophication. It is also particularly important for
water reuse Water reclamation (also called wastewater reuse, water reuse or water recycling) is the process of converting municipal wastewater (sewage) or industrial wastewater into water that can be reused for a variety of purposes. Types of reuse include: ...
systems where high phosphorus concentrations may lead to fouling of downstream equipment such as reverse osmosis. A range of treatment processes are available to remove nitrogen and phosphorus. Biological nutrient removal (BNR) is regarded by some as a type of secondary treatment process, and by others as a tertiary (or "advanced") treatment process.


Nitrogen removal

Nitrogen is removed through the biological
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
of nitrogen from
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
to nitrate (
nitrification ''Nitrification'' is the biological oxidation of ammonia to nitrite followed by the oxidation of the nitrite to nitrate occurring through separate organisms or direct ammonia oxidation to nitrate in comammox bacteria. The transformation of am ...
), followed by
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitr ...
, the reduction of nitrate to nitrogen gas. Nitrogen gas is released to the atmosphere and thus removed from the water. Nitrification itself is a two-step aerobic process, each step facilitated by a different type of bacteria. The oxidation of ammonia (NH4+) to nitrite (NO2) is most often facilitated by bacteria such as ''
Nitrosomonas ''Nitrosomonas'' is a genus of Gram-negative bacteria, belonging to the Betaproteobacteria. It is one of the five genera of ammonia-oxidizing bacteria and, as an obligate chemolithoautotroph, uses ammonia (NH3) as an energy source and carbon di ...
'' spp. ("nitroso" referring to the formation of a
nitroso In organic chemistry, nitroso refers to a functional group in which the nitric oxide () group is attached to an organic moiety (chemistry), moiety. As such, various nitroso groups can be categorized as ''C''-nitroso compounds (e.g., nitrosoalkane ...
functional group). Nitrite oxidation to nitrate (NO3), though traditionally believed to be facilitated by ''
Nitrobacter ''Nitrobacter'' is a genus comprising rod-shaped, gram-negative, and chemoautotrophic bacteria. The name ''Nitrobacter'' derives from the Latin neuter gender noun ''nitrum, nitri'', alkalis; the Ancient Greek noun βακτηρία'','' βακτ ...
'' spp. (nitro referring the formation of a
nitro functional group In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups (). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitr ...
), is now known to be facilitated in the environment predominantly by ''
Nitrospira ''Nitrospira'' (from Latin: nitro, meaning "nitrate" and Greek: spira, meaning "spiral") translate into “a nitrate spiral” is a genus of bacteria within the monophyletic clade of the Nitrospirota phylum. The first member of this genus was d ...
'' spp. Denitrification requires anoxic conditions to encourage the appropriate biological communities to form. "Anoxic conditions" refers to a situation where oxygen is absent but nitrate is present. Denitrification is facilitated by a wide diversity of bacteria. The
activated sludge process The activated sludge process is a type of biological wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa. It uses air (or oxygen) and microorganisms ...
, sand filters, waste stabilization ponds, constructed wetlands and other processes can all be used to reduce nitrogen. Since denitrification is the reduction of nitrate to dinitrogen (molecular nitrogen) gas, an
electron donor In chemistry, an electron donor is a chemical entity that donates electrons to another compound. It is a reducing agent that, by virtue of its donating electrons, is itself oxidized in the process. Typical reducing agents undergo permanent chemi ...
is needed. This can be, depending on the wastewater, organic matter (from the sewage itself), sulfide, or an added donor like methanol. The sludge in the anoxic tanks (denitrification tanks) must be mixed well (mixture of recirculated mixed liquor, return activated sludge, and raw influent) e.g. by using submersible mixers in order to achieve the desired denitrification. Over time, different treatment configurations for activated sludge processes have evolved to achieve high levels of nitrogen removal. An initial scheme, the Ludzack–Ettinger Process, placed an anoxic treatment zone before the aeration tank and clarifier, using the return activated sludge (RAS) from the clarifier as a nitrate source. The sewage (either raw or as effluent from primary clarification) serves as the electron source for the facultative bacteria to metabolize carbon, using the inorganic nitrate as a source of oxygen instead of dissolved molecular oxygen. This denitrification scheme was naturally limited to the amount of soluble nitrate present in the RAS. Nitrate reduction was limited because RAS rate is limited by the performance of the clarifier. The "Modified Ludzak–Ettinger Process" (MLE) is an improvement on the original concept, for it recycles mixed liquor from the discharge end of the aeration tank to the head of the anoxic tank to provide a consistent source of soluble nitrate for the facultative bacteria. In this instance, raw sewage continues to provide the electron source, and sub-surface mixing maintains the bacteria in contact with both electron source and soluble nitrate in the absence of dissolved oxygen. There are other process configurations, including anoxic tanks before and after the aeration tanks, such as variations of the Bardenpho process.


Phosphorus removal

Studies of United States sewage in the late 1960s estimated mean per capita contributions of in urine and feces, in synthetic detergents, and lesser variable amounts used as corrosion and scale control chemicals in water supplies. Source control via alternative detergent formulations has subsequently reduced the largest contribution, but naturally the phosphorus content of urine and feces remained unchanged. Phosphorus can be removed biologically in a process called
enhanced biological phosphorus removal Enhanced biological phosphorus removal (EBPR) is a sewage treatment configuration applied to activated sludge systems for the removal of phosphate. The common element in EBPR implementations is the presence of an anaerobic tank (nitrate and oxygen ...
. In this process, specific bacteria, called
polyphosphate-accumulating organisms Polyphosphate-accumulating organisms (PAOs) are a group of bacteria that, under certain conditions, facilitate the removal of large amounts of phosphorus from wastewater in a process, called enhanced biological phosphorus removal (EBPR). PAOs acc ...
(PAOs), are selectively enriched and accumulate large quantities of phosphorus within their cells (up to 20 percent of their mass). Phosphorus removal can also be achieved by chemical
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
, usually with
salts In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively c ...
of
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
(e.g.
ferric chloride Iron(III) chloride is the inorganic compound with the formula . Also called ferric chloride, it is a common compound of iron in the +3 oxidation state. The anhydrous compound is a crystalline solid with a melting point of 307.6 °C. The col ...
) or
aluminum Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
(e.g. alum), or lime. This may lead to a higher sludge production as hydroxides precipitate and the added chemicals can be expensive. Chemical phosphorus removal requires significantly smaller equipment footprint than biological removal, is easier to operate and is often more reliable than biological phosphorus removal. Another method for phosphorus removal is to use granular laterite or
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These p ...
. Some systems use both biological phosphorus removal and chemical phosphorus removal. The chemical phosphorus removal in those systems may be used as a backup system, for use when the biological phosphorus removal is not removing enough phosphorus, or may be used continuously. In either case, using both biological and chemical phosphorus removal has the advantage of not increasing sludge production as much as chemical phosphorus removal on its own, with the disadvantage of the increased initial cost associated with installing two different systems. Once removed, phosphorus, in the form of a phosphate-rich
sewage sludge Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term " septage" also refers to sludge from simple wastewater treatment but is connected to s ...
, may be sent to landfill or used as fertilizer in admixture with other digested sewage sludges. In the latter case, the treated sewage sludge is also sometimes referred to as biosolids. 22% of the world's phosphorus needs could be satisfied by recycling residential wastewater.


Fourth treatment stage

Micropollutants such as pharmaceuticals, ingredients of household chemicals, chemicals used in small businesses or industries,
environmental persistent pharmaceutical pollutant The term environmental persistent pharmaceutical pollutants (EPPP) was first suggested in the nomination in 2010 of pharmaceuticals and environment as an emerging issue in a Strategic Approach to International Chemicals Management ( SAICM) by t ...
s (EPPP) or pesticides may not be eliminated in the commonly used sewage treatment processes (primary, secondary and tertiary treatment) and therefore lead to water pollution. Although concentrations of those substances and their decomposition products are quite low, there is still a chance of harming aquatic organisms. For pharmaceuticals, the following substances have been identified as "toxicologically relevant": substances with endocrine disrupting effects,
genotoxic Genotoxicity is the property of chemical agents that damage the genetic information within a cell causing mutations, which may lead to cancer. While genotoxicity is often confused with mutagenicity, all mutagens are genotoxic, but some genotoxic s ...
substances and substances that enhance the development of bacterial resistances.Walz, A., Götz, K. (2014)
Arzneimittelwirkstoffe im Wasserkreislauf
ISOE-Materialien zur Sozialen Ökologie Nr. 36 (in German)
They mainly belong to the group of EPPP. Techniques for elimination of micropollutants via a fourth treatment stage during sewage treatment are implemented in Germany, Switzerland, Sweden and the Netherlands and tests are ongoing in several other countries. Such process steps mainly consist of activated carbon filters that adsorb the micropollutants. The combination of advanced oxidation with ozone followed by granular activated carbon (GAC) has been suggested as a cost-effective treatment combination for pharmaceutical residues. For a full reduction of microplasts the combination of ultrafiltration followed by GAC has been suggested. Also the use of enzymes such as
laccase Laccases () are multicopper oxidases found in plants, fungi, and bacteria. Laccases oxidize a variety of phenolic substrates, performing one-electron oxidations, leading to crosslinking. For example, laccases play a role in the formation of l ...
secreted by fungi is under investigation. Microbial biofuel cells are investigated for their property to treat organic matter in sewage. To reduce pharmaceuticals in water bodies, "source control" measures are also under investigation, such as innovations in drug development or more responsible handling of drugs. In the US, the
National Take Back Initiative The National Take Back Initiative is a voluntary program in the United States, encouraging the public to return excess or expired drugs. The take back events occur twice annually, in the spring and in the fall. The program is coordinated by the Drug ...
is a voluntary program with the general public, encouraging people to return excess or expired drugs, and avoid flushing them to the sewage system.


Sludge treatment and disposal


Environmental impacts

Sewage treatment plants can have significant effects on the biotic status of receiving waters and can cause some water pollution, especially if the treatment process used is only basic. For example, for sewage treatment plants without nutrient removal,
eutrophication Eutrophication is the process by which an entire body of water, or parts of it, becomes progressively enriched with minerals and nutrients, particularly nitrogen and phosphorus. It has also been defined as "nutrient-induced increase in phytopla ...
of receiving water bodies can be a problem.


Reuse


Irrigation

Increasingly, people use treated or even untreated sewage for
irrigation Irrigation (also referred to as watering) is the practice of applying controlled amounts of water to land to help grow crops, landscape plants, and lawns. Irrigation has been a key aspect of agriculture for over 5,000 years and has been devel ...
to produce crops. Cities provide lucrative markets for fresh produce, so are attractive to farmers. Because agriculture has to compete for increasingly scarce water resources with industry and municipal users, there is often no alternative for farmers but to use water polluted with sewage directly to water their crops. There can be significant health hazards related to using water loaded with pathogens in this way. The
World Health Organization The World Health Organization (WHO) is a specialized agency of the United Nations responsible for international public health. The WHO Constitution states its main objective as "the attainment by all peoples of the highest possible level of ...
developed guidelines for safe use of wastewater in 2006.WHO (2006)
WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater – Volume IV: Excreta and greywater use in agriculture
. World Health Organization (WHO), Geneva, Switzerland
They advocate a ‘multiple-barrier’ approach to wastewater use, where farmers are encouraged to adopt various risk-reducing behaviors. These include ceasing irrigation a few days before harvesting to allow pathogens to die off in the sunlight, applying water carefully so it does not contaminate leaves likely to be eaten raw, cleaning vegetables with disinfectant or allowing fecal sludge used in farming to dry before being used as a human manure.


Reclaimed water


Global situation

Before the 20th century in Europe, sewers usually discharged into a
body of water A body of water or waterbody (often spelled water body) is any significant accumulation of water on the surface of Earth or another planet. The term most often refers to oceans, seas, and lakes, but it includes smaller pools of water such a ...
such as a river, lake, or ocean. There was no treatment, so the breakdown of the human waste was left to the
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
. This could lead to satisfactory results if the
assimilative capacity Assimilative capacity is the ability for pollutants to be absorbed by an environment without detrimental effects to the environment or those who use of it. Natural absorption into an environment is achieved through dilution, dispersion and removal ...
of the ecosystem is sufficient which is nowadays not often the case due to increasing population density. Today, the situation in urban areas of industrialized countries is usually that sewers route their contents to a sewage treatment plant rather than directly to a body of water. In many
developing countries A developing country is a sovereign state with a lesser developed industrial base and a lower Human Development Index (HDI) relative to other countries. However, this definition is not universally agreed upon. There is also no clear agreem ...
, however, the bulk of municipal and industrial wastewater is discharged to rivers and the
ocean The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wo ...
without any treatment or after preliminary treatment or primary treatment only. Doing so can lead to
water pollution Water pollution (or aquatic pollution) is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. ...
. Few reliable figures exist on the share of the wastewater collected in sewers that is being treated in the world. A global estimate by
UNDP The United Nations Development Programme (UNDP)french: Programme des Nations unies pour le développement, PNUD is a United Nations agency tasked with helping countries eliminate poverty and achieve sustainable economic growth and human dev ...
and
UN-Habitat The United Nations Human Settlements Programme (UN-Habitat) is the United Nations programme for human settlements and sustainable urban development. It was established in 1977 as an outcome of the first United Nations Conference on Human Settleme ...
in 2010 was that 90% of all wastewater generated is released into the environment untreated. A more recent study in 2021 estimated that globally, about 52% of sewage is treated. However, sewage treatment rates are highly unequal for different countries around the world. For example, while high-income countries treat approximately 74% of their sewage,
developing countries A developing country is a sovereign state with a lesser developed industrial base and a lower Human Development Index (HDI) relative to other countries. However, this definition is not universally agreed upon. There is also no clear agreem ...
treat an average of just 4.2%. As of 2022, without sufficient treatment, more than 80% of all wastewater generated globally is released into the environment. High-income nations treat, on average, 70% of the wastewater they produce, according to UN Water. Only 8% of wastewater produced in low-income nations receives any sort of treatment. The Joint Monitoring Programme (JMP) for Water Supply and Sanitation by WHO and UNICEF report in 2021 that 82% of people with sewer connections are connected to sewage treatment plants providing at least secondary treatment.WHO and UNICEF (2021
Progress on household drinking water, sanitation and hygiene 2000-2020: Five years into the SDGs.
Geneva: World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF), 2021. Licence: CC BY-NC-SA 3.0 IGO
However, this value varies widely between regions. For example in Europe, North America, Northern Africa and Western Asia, a total of 31 countries had universal (>99%) wastewater treatment. However, in Albania, Bermuda, North Macedonia and Serbia "less than 50% of sewered wastewater received secondary or better treatment" and in Algeria, Lebanon and Libya the value was less than 20% of sewered wastewater that wasbeing treated. The report also found that "globally, 594 million people have sewer connections that don’t receive sufficient treatment. Many more are connected to wastewater treatment plants that do not provide effective treatment or comply with effluent requirements.". In October 2021,
British British may refer to: Peoples, culture, and language * British people, nationals or natives of the United Kingdom, British Overseas Territories, and Crown Dependencies. ** Britishness, the British identity and common culture * British English, ...
Members of Parliament A member of parliament (MP) is the representative in parliament of the people who live in their electoral district. In many countries with bicameral parliaments, this term refers only to members of the lower house since upper house members of ...
voted to continue allowing untreated sewage from combined sewer overflows to be released into waterways.


Global targets

Sustainable Development Goal 6 has a Target 6.3 which is formulated as follows: "By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally." The corresponding Indicator 6.3.1 is the "proportion of wastewater safely treated". It is anticipated that wastewater production would rise by 24% by 2030 and by 51% by 2050. Data in 2020 showed that there is still too much uncollected household wastewater: Only 66% of all household wastewater flows were collected at treatment facilities in 2020 (this is determined from data from 128 countries).UN-Water, 2021
Summary Progress Update 2021 – SDG 6 – water and sanitation for all
Version: July 2021. Geneva, Switzerland
Based on data from 42 countries in 2015, the report stated that "32 per cent of all wastewater flows generated from point sources received at least some treatment". For sewage that has indeed been collected at centralized sewage treatment plants, about 79% went on to be safely treated in 2020.


History

The history of sewage treatment had the following developments: It began with land application (
sewage farm Sewage farms use sewage for irrigation and fertilizing agricultural land. The practice is common in warm, arid climates where irrigation is valuable while sources of fresh water are scarce. Suspended solids may be converted to humus by microbes an ...
s) in the 1840s in England, followed by chemical treatment and sedimentation of sewage in tanks, then biological treatment the late 19th century, which led to the development of the activated sludge process starting in 1912.


Regulations

In most countries, sewage collection and treatment are subject to local and national regulations and standards.


By country


Overview


Europe

In the European Union, 0.8% of total energy consumption goes to wastewater treatment facilities. The European Union needs to make extra investments of €90 billion in the water and waste sector to meet its 2030 climate and energy goals. An estimated 60–70% of wastewater's potential value is still untapped (that is, heat, energy, nutrients, minerals, metals, chemicals, etc.).


Asia


India

The '
Delhi Jal Board Delhi Jal Board (DJB) is the government agency responsible for supply of potable water to the most of the National Capital Territory region of Delhi, India. Delhi Jal Board was constituted on 6 April 1998 through an Act of the Delhi Legislative ...
' (DJB) is currently operating on the construction of the largest sewage treatment plant in India. I
will be operational by the end of 2022
with an estimated capacity of 564 MLD. It is supposed to solve the existing situation wherein untreated sewage water is being discharged directly into the river ‘Yamuna’.


Japan


Africa


Libya


Americas


United States


See also

*
Decentralized wastewater system Decentralized wastewater systems (also referred to as decentralized wastewater treatment systems) convey, treat and dispose or reuse wastewater from small and low-density communities, buildings and dwellings in remote areas, individual public or ...
*
List of largest wastewater treatment plants The largest wastewater treatment plants can be defined in several ways.New Delta Treatment Plant project is being developed by The largest joint venture in North Africa and the middle east (MENA) with experience of over 240 years in the field joine ...
*
List of water supply and sanitation by country This list of water supply and sanitation by country provides information on the status of water supply and sanitation at a national or, in some cases, also regional level. Water supply and sanitation by country * Water supply and sanitation in Afg ...
*
Nutrient Recovery and Reuse Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resou ...
: producing agricultural nutrients from sewage *
Organisms involved in water purification Most organisms involved in water purification originate from the waste, wastewater or water stream itself or arrive as resting spore of some form from the atmosphere. In a very few cases, mostly associated with constructed wetlands, specific or ...
* Sanitary engineering *
Waste disposal Waste management or waste disposal includes the processes and actions required to manage waste from its inception to its final disposal. This includes the collection, transport, treatment and disposal of waste, together with monitorin ...


References


External links


Water Environment Federation
– Professional association focusing on municipal wastewater treatment {{DEFAULTSORT:Sewage Treatment Environmental engineering Pollution control technologies Sanitation Treatment Sewerage infrastructure Water pollution