HOME

TheInfoList



OR:

Thermochronology is the study of the thermal evolution of a region of a planet. Thermochronologists use
radiometric dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...
along with the
closure temperature In radiometric dating, closure temperature or blocking temperature refers to the temperature of a system, such as a mineral, at the time given by its radiometric date. In physical terms, the closure temperature is the temperature at which a syste ...
s that represent the temperature of the mineral being studied at the time given by the date recorded to understand the thermal history of a specific rock, mineral, or geologic unit. It is a subfield within
geology Geology () is a branch of natural science concerned with Earth and other Astronomical object, astronomical objects, the features or rock (geology), rocks of which it is composed, and the processes by which they change over time. Modern geology ...
, and is closely associated with
geochronology Geochronology is the science of determining the age of rocks, fossils, and sediments using signatures inherent in the rocks themselves. Absolute geochronology can be accomplished through radioactive isotopes, whereas relative geochronology is ...
. A typical thermochronological study will involve the dates of a number of rock samples from different areas in a region, often from a vertical transect along a steep canyon, cliff face, or slope. These samples are then dated. With some knowledge of the subsurface thermal structure, these dates are translated into depths and times at which that particular sample was at the mineral's closure temperature. If the rock is today at the surface, this process gives the
exhumation Burial, also known as interment or inhumation, is a method of final disposition whereby a dead body is placed into the ground, sometimes with objects. This is usually accomplished by excavating a pit or trench, placing the deceased and objec ...
rate of the rock. Common isotopic systems used for thermochronology include fission track dating in
zircon Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of t ...
,
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ions, respectively, in the crystal. The formula of the admixture of the three most common ...
,
titanite Titanite, or sphene (from the Greek ''sphenos'' (σφηνώ), meaning wedge), is a calcium titanium nesosilicate mineral, Ca Ti Si O5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals ...
, natural glasses, and other uranium-rich mineral grains. Others include potassium-argon and argon-argon dating in apatite, and (U-Th)/He dating zircon and apatite.


Radiometric Dating

Radiometric dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...
is how geologist determine the age of a rock. In a
closed system A closed system is a natural physical system that does not allow transfer of matter in or out of the system, although — in contexts such as physics, chemistry or engineering — the transfer of energy (''e.g.'' as work or heat) is allowed. In ...
, the amount of radiogenic isotopes present in a sample is a direct function of time and the decay rate of the mineral. Therefore, to find the age of a sample, geologists find the ratio of
daughter isotope In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (de ...
s to remaining parent isotopes present in the mineral through different methods, such as
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
. From the known
parent isotope In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay directly ...
s and the
decay constant A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where is the quantity and (lambda) is a positive rate ...
, we can then determine the age. Different ions can be analyzed for this and are called different dating. For thermochronology, the ages associated with these isotopic ratios is directly linked with the sample's thermal history. At high temperatures, the rocks will behave as if they are in an open system, which relates to the increased rate of
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical ...
of the daughter isotopes out of the mineral. At low temperatures, however, the rocks will behave as a
closed system A closed system is a natural physical system that does not allow transfer of matter in or out of the system, although — in contexts such as physics, chemistry or engineering — the transfer of energy (''e.g.'' as work or heat) is allowed. In ...
, meaning that all the products of decay are still found within the original host rock, and therefore more accurate to date. The same mineral can switch between these two systems of behavior, but not instantaneously. In order to switch over, the rock must first reach its
closure temperature In radiometric dating, closure temperature or blocking temperature refers to the temperature of a system, such as a mineral, at the time given by its radiometric date. In physical terms, the closure temperature is the temperature at which a syste ...
. Closure temperature is specific for each mineral and can be very useful if multiple minerals are found in a sample. This temperature is dependent on several assumptions, including: grain size and shape, a constant cooling rate, and chemical composition.


Types of Dating associated with Thermochronology


Fission Track Dating

Fission track dating is the method used in thermochronology to find the approximate age of several uranium-rich minerals, such as
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH−, F− and Cl− ions, respectively, in the crystal. The formula of the admixture of the three most common ...
. When
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
of uranium-238 ( 238U) happens in organic materials, damage tracks are created. These are due to a fast charged particle, released from the decay of Uranium, creating a thin trail of damage along its trajectory through the solid. To better study the fission tracks created, the natural damage tracks are further enlarged by chemical etching so they can be viewed under ordinary
optical microscope The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of micro ...
s. The age of the mineral is then determined by first knowing the spontaneous rate of fission decay, and then measuring the number of tracks accumulated over the mineral's lifetime as well as estimating the amount of Uranium still present. At higher temperatures, fission tracks are known to anneal. Therefore, exact dating of samples is very hard. Absolute age can only be determined if the sample has cooled rapidly and remain undisturbed at or close to the surface. The environmental conditions, such as pressure and temperature, and their effects on the fission track on the atomic level still remains unclear. However, the stability of the fission tracks can generally be narrowed down to temperature and time. Approximate ages of minerals still reflect aspects of the thermal history of the sample, such as
uplift Uplift may refer to: Science * Geologic uplift, a geological process ** Tectonic uplift, a geological process * Stellar uplift, the theoretical prospect of moving a stellar mass * Uplift mountains * Llano Uplift * Nemaha Uplift Business * Upli ...
and
denudation Denudation is the geological processes in which moving water, ice, wind, and waves erode the Earth's surface, leading to a reduction in elevation and in relief of landforms and landscapes. Although the terms erosion and denudation are used interc ...
.


Potassium-Argon/Argon-Argon Dating

Potassium-Argon/Argon-Argon dating is applied in thermochronology in order to find the age of the minerals, such as apatite. Potassium-argon (K-Ar) dating is concerned with determining the amount of the product of radioactive decay of isotopic potassium (40K) into its decay product of isotopic argon (40Ar). Because the 40Ar is able to escape in liquids, such as molten rock, but accumulates when the rock solidifies, or recrystallizes, geologists are able to measure the time since recrystallization by looking at the ratio of the amount of 40Ar that has accumulated to the 40K remaining. The age can be found by knowing the
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
of potassium. Argon-argon dating uses the ratio of 40Ar to 39Ar as a proxy for 40K to find the date of a sample. This method has been adopted because it only requires one measurement of an isotope. To do this, the nucleus of the argon isotope needs to be
irradiated Irradiation is the process by which an object is exposed to radiation. The exposure can originate from various sources, including natural sources. Most frequently the term refers to ionizing radiation, and to a level of radiation that will serve ...
from a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
in order to convert the stable isotope 39K to radioactive 40Ar. In order to measure the age of the rock, you have to repeat this process in a sample of known age in order to compare the ratios.


(U-Th)/He Dating

(U-Th)/He dating is used to measure the age of a sample by measuring the amount of radiogenic
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
(4He) present as a result of the
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
from
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
and
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
. This helium product is kept in the mineral until the closure temperature is reached, and therefore can be determinant of the thermal evolution of the mineral. As in fission track dating, the exact age of the sample is difficult to determine. If the temperature goes above the closure temperature the product of decay, helium, diffuses to the atmosphere and the dating then resets.


Applications

By determining the relative date and temperature of a sample being studied, geologists are able to understand the structural information of the deposits. Thermochronology is used in a wide variety of subjects today, such as tectonic studies, exhumation of mountain belts, hydrothermal ore deposits, and even meteorites. Understanding the thermal history of an area, such as its exhumation rate, crystallization duration, and more, can be applicable in a wide variety of fields and help understand the history of earth and its thermal evolution.


See also

*
Astronomical chronology Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
**
Age of the Earth The age of Earth is estimated to be 4.54 ± 0.05 billion years This age may represent the age of Earth's accretion, or core formation, or of the material from which Earth formed. This dating is based on evidence from radiometric age-dating of ...
**
Age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
*
Chronological dating Chronological dating, or simply dating, is the process of attributing to an object or event a date in the past, allowing such object or event to be located in a previously established chronology. This usually requires what is commonly known as a "d ...
, archaeological chronology **
Absolute dating Absolute dating is the process of determining an age on a specified chronology in archaeology and geology. Some scientists prefer the terms chronometric or calendar dating, as use of the word "absolute" implies an unwarranted certainty of accurac ...
**
Relative dating Relative dating is the science of determining the relative order of past events (i.e., the age of an object in comparison to another), without necessarily determining their absolute age (i.e., estimated age). In geology, rock or superficial dep ...
** Phase (archaeology) **
Archaeological association This page is a glossary of archaeology, the study of the human past from material remains. A B C D E F ...
*
Geochronology Geochronology is the science of determining the age of rocks, fossils, and sediments using signatures inherent in the rocks themselves. Absolute geochronology can be accomplished through radioactive isotopes, whereas relative geochronology is ...
** Future of the Earth **
Geologic time scale The geologic time scale, or geological time scale, (GTS) is a representation of time based on the rock record of Earth. It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochr ...
** Geological history of Earth **
Plate reconstruction :''This article describes techniques; for a history of the movement of tectonic plates, see Geological history of Earth.'' Plate reconstruction is the process of reconstructing the positions of tectonic plates relative to each other (relative moti ...
**
Plate tectonics Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of larg ...
** Timeline of natural history ** List of geochronologic names * General **
Consilience In science and history, consilience (also convergence of evidence or concordance of evidence) is the principle that evidence from independent, unrelated sources can "converge" on strong conclusions. That is, when multiple sources of evidence are ...
, evidence from independent, unrelated sources can "converge" on strong conclusions


References

{{Reflist Radiometric dating