HOME

TheInfoList



OR:

A thermal power station is a type of
power station A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid. Many pow ...
in which
heat energy In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
is converted to
electrical energy Electrical energy is energy related to forces on electrically charged particles and the movement of electrically charged particles (often electrons in wires, but not always). This energy is supplied by the combination of electric current and electr ...
. In a steam-generating cycle heat is used to boil water in a large
pressure vessel A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure. Construction methods and materials may be chosen to suit the pressure application, and will depend on the size o ...
to produce high-pressure steam, which drives a
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbin ...
connected to an electrical generator. The low-pressure exhaust from the turbine enters a
steam condenser A surface condenser is a water-cooled shell and tube heat exchanger installed to condense exhaust steam from a steam turbine in thermal power stations. These condensers are heat exchangers which convert steam from its gaseous to its liquid state ...
where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a
Rankine cycle The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sour ...
. The design of thermal power stations depends on the intended energy source: fossil fuel,
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space *Nuclear ...
and
geothermal power Geothermal power is electrical power generated from geothermal energy. Technologies in use include dry steam power stations, flash steam power stations and binary cycle power stations. Geothermal electricity generation is currently used in 26 ...
, solar energy,
biofuel Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels, such as oil. According to the United States Energy Information Administration (EIA ...
s, and waste incineration are all used. Certain thermal power stations are also designed to produce heat for industrial purposes; for
district heating District heating (also known as heat networks or teleheating) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating ...
; or
desalination Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltw ...
of water, in addition to generating electrical power. Fuels such as
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon di ...
or oil can also be burnt directly in gas turbines ( internal combustion). These plants can be of the open cycle or the more efficient
combined cycle A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turb ...
type.


Types of thermal energy

Almost all
coal-fired power station A coal-fired power station or coal power plant is a thermal power station which burns coal to generate electricity. Worldwide, there are about 8,500 coal-fired power stations totaling over 2,000 gigawatts capacity. They generate about a th ...
s, petroleum,
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space *Nuclear ...
, geothermal,
solar thermal electric Concentrated solar power (CSP, also known as concentrating solar power, concentrated solar thermal) systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight into a receiver. Electricity is generated when ...
, and waste incineration plants, as well as all natural gas power stations are thermal.
Natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon di ...
is frequently
burned Burned or burnt may refer to: * Anything which has undergone combustion * Burned (image), quality of an image transformed with loss of detail in all portions lighter than some limit, and/or those darker than some limit * ''Burnt'' (film), a 2015 ...
in gas turbines as well as
boiler A boiler is a closed vessel in which fluid (generally water) is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central h ...
s. The
waste heat Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility ( ...
from a gas turbine, in the form of hot exhaust gas, can be used to raise steam by passing this gas through a
heat recovery steam generator A heat recovery steam generator (''HRSG'') is an energy recovery heat exchanger that recovers heat from a hot gas stream, such as a combustion turbine or other waste gas stream. It produces steam that can be used in a process (cogeneration) or u ...
(HRSG). The steam is then used to drive a steam turbine in a
combined cycle A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turb ...
plant that improves overall efficiency. Power stations burning coal,
fuel oil Fuel oil is any of various fractions obtained from the distillation of petroleum (crude oil). Such oils include distillates (the lighter fractions) and residues (the heavier fractions). Fuel oils include heavy fuel oil, marine fuel oil (MFO), bun ...
, or natural gas are often called '' fossil fuel power stations''. Some biomass-fueled thermal power stations have appeared also. Non-nuclear thermal power stations, particularly fossil-fueled plants, which do not use
cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
are sometimes referred to as ''conventional power stations''. Commercial
electric utility An electric utility is a company in the electric power industry (often a public utility) that engages in electricity generation and distribution of electricity for sale generally in a regulated market. The electrical utility industry is a major p ...
power stations are usually constructed on a large scale and designed for continuous operation. Virtually all electric power stations use three-phase electrical generators to produce alternating current (AC) electric power at a frequency of 50 Hz or 60 Hz. Large companies or institutions may have their own power stations to supply heating or electricity to their facilities, especially if steam is created anyway for other purposes. Steam-driven power stations have been used to drive most ships in most of the 20th century. Shipboard power stations usually directly couple the turbine to the ship's propellers through gearboxes. Power stations in such ships also provide steam to smaller turbines driving electric generators to supply electricity. Nuclear marine propulsion is, with few exceptions, used only in naval vessels. There have been many turbo-electric ships in which a steam-driven turbine drives an electric generator which powers an electric motor for propulsion.
Cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
plants, often called combined heat and power (CHP) facilities, produce both electric power and heat for process heat or space heating, such as steam and hot water.


History

The
reciprocating steam engine A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common featu ...
has been used to produce mechanical power since the 18th century, with notable improvements being made by
James Watt James Watt (; 30 January 1736 (19 January 1736 OS) – 25 August 1819) was a Scottish inventor, mechanical engineer, and chemist who improved on Thomas Newcomen's 1712 Newcomen steam engine with his Watt steam engine in 1776, which was fu ...
. When the first commercially developed central electrical power stations were established in 1882 at Pearl Street Station in New York and
Holborn Viaduct power station Holborn Viaduct power station, named the Edison Electric Light Station, was the world's first coal-fired power station generating electricity for public use. It was built at number 57 Holborn Viaduct in central London, by Thomas Edison's Edison ...
in London, reciprocating steam engines were used. The development of the
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbin ...
in 1884 provided larger and more efficient machine designs for central generating stations. By 1892 the turbine was considered a better alternative to reciprocating engines; turbines offered higher speeds, more compact machinery, and stable speed regulation allowing for parallel synchronous operation of generators on a common bus. After about 1905, turbines entirely replaced reciprocating engines in almost all large central power stations. The largest reciprocating engine-generator sets ever built were completed in 1901 for the Manhattan Elevated Railway. Each of seventeen units weighed about 500 tons and was rated 6000 kilowatts; a contemporary turbine set of similar rating would have weighed about 20% as much.


Thermal power generation efficiency

The energy efficiency of a conventional thermal power station is defined as saleable energy produced as a percent of the
heating value The heating value (or energy value or calorific value) of a substance, usually a fuel or food (see food energy), is the amount of heat released during the combustion of a specified amount of it. The ''calorific value'' is the total energy releas ...
of the fuel consumed. A simple cycle gas turbine achieves energy conversion efficiencies from 20 to 35%. Typical coal-based power plants operating at steam pressures of 170 bar and 570 °C run at efficiency of 35 to 38%,John Zactruba
The Efficiency of Power Plants of Different Types
Brighthub Engineering. Retrieved 2019-04-24.
with state-of-the-art fossil fuel plants at 46% efficiency. Combined-cycle systems can reach higher values. As with all heat engines, their efficiency is limited, and governed by the laws of
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of ther ...
s. The
Carnot efficiency A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynam ...
dictates that higher efficiencies can be attained by increasing the temperature of the steam. Sub-critical pressure fossil fuel power stations can achieve 36–40% efficiency. Supercritical designs have efficiencies in the low to mid 40% range, with new "ultra critical" designs using pressures above 4400 psi (30.3 MPa) and multiple stage reheat reaching 45-48% efficiency. Above the critical point for water of and 3212 psi (22.06 MPa), there is no phase transition from water to steam, but only a gradual decrease in density. Currently most nuclear power stations must operate below the temperatures and pressures that coal-fired plants do, in order to provide more conservative safety margins within the systems that remove heat from the nuclear fuel. This, in turn, limits their thermodynamic efficiency to 30–32%. Some advanced reactor designs being studied, such as the
very-high-temperature reactor A high-temperature gas-cooled reactor (HTGR), is a nuclear reactor that uses a graphite moderator with a once-through uranium fuel cycle. The HTGR is a type of high-temperature reactor (HTR) that can conceptually have an outlet temperature of ...
, Advanced Gas-cooled Reactor, and supercritical water reactor, would operate at temperatures and pressures similar to current coal plants, producing comparable thermodynamic efficiency. The energy of a thermal power station not utilized in power production must leave the plant in the form of heat to the environment. This
waste heat Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility ( ...
can go through a condenser and be disposed of with
cooling water Cooling tower and water discharge of a nuclear power plant Water cooling is a method of heat removal from components and industrial equipment. Evaporative cooling using water is often more efficient than air cooling. Water is inexpensive and ...
or in
cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat and c ...
s. If the waste heat is instead used for
district heating District heating (also known as heat networks or teleheating) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating ...
, it is called
cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
. An important class of thermal power station is that associated with
desalination Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltw ...
facilities; these are typically found in desert countries with large supplies of
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon di ...
, and in these plants freshwater production and electricity are equally important co-products. Other types of power stations are subject to different efficiency limitations. Most hydropower stations in the United States are about 90 percent efficient in converting the energy of falling water into electricity while the efficiency of a wind turbine is limited by
Betz's law Betz's law indicates the maximum power that can be extracted from the wind, independent of the design of a wind turbine in open flow. It was published in 1919 by the German physicist Albert Betz. The law is derived from the principles of conserv ...
, to about 59.3%, and actual wind turbines show lower efficiency.


Electricity cost

The direct cost of electric energy produced by a thermal power station is the result of cost of fuel, capital cost for the plant, operator labour, maintenance, and such factors as ash handling and disposal. Indirect social or environmental costs, such as the economic value of environmental impacts, or environmental and health effects of the complete fuel cycle and plant decommissioning, are not usually assigned to generation costs for thermal stations in utility practice, but may form part of an environmental impact assessment. Those indirect costs belong to the broader concept of
externalities In economics, an externality or external cost is an indirect cost or benefit to an uninvolved third party that arises as an effect of another party's (or parties') activity. Externalities can be considered as unpriced goods involved in either c ...
.


Boiler and steam cycle

In the nuclear plant field, '' steam generator'' refers to a specific type of large
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
used in a
pressurized water reactor A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan and Canada). In a PWR, the primary coolant (water) is ...
(PWR) to thermally connect the primary (reactor plant) and secondary (steam plant) systems, which generates steam. In a
boiling water reactor A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet graphite-moderated RBMK. It is the second most common type of electricity-generating nuc ...
(BWR), no separate steam generator is used and water boils in the reactor core. In some industrial settings, there can also be steam-producing heat exchangers called ''
heat recovery steam generator A heat recovery steam generator (''HRSG'') is an energy recovery heat exchanger that recovers heat from a hot gas stream, such as a combustion turbine or other waste gas stream. It produces steam that can be used in a process (cogeneration) or u ...
s'' (HRSG) which utilize heat from some industrial process, most commonly utilizing hot exhaust from a gas turbine. The steam generating boiler has to produce steam at the high purity, pressure and temperature required for the steam turbine that drives the electrical generator. Geothermal plants do not need boilers because they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids. A fossil fuel steam generator includes an economizer, a steam drum, and the furnace with its steam generating tubes and superheater coils. Necessary safety valves are located at suitable points to protect against excessive boiler pressure. The air and flue gas path equipment include: forced draft (FD) fan,
air preheater An air preheater is any device designed to heat air before another process (for example, combustion in a boiler With the primary objective of increasing the thermal efficiency of the process. They may be used alone or to replace a recuperative ...
(AP), boiler furnace, induced draft (ID) fan, fly ash collectors (
electrostatic precipitator An electrostatic precipitator (ESP) is a filterless device that removes fine particles, like dust and smoke, from a flowing gas using the force of an induced electrostatic charge minimally impeding the flow of gases through the unit. In con ...
or
baghouse A baghouse, also known as a baghouse filter, bag filter, or fabric filter is an air pollution control device and dust collector that removes particulates or gas released from commercial processes out of the air. Power plants, steel mills, pharmace ...
), and the flue-gas stack.


Feed water heating

The
boiler feed water A boiler is a closed vessel in which fluid (generally water) is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central h ...
used in the steam boiler is a means of transferring heat energy from the burning fuel to the mechanical energy of the spinning
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbin ...
. The total feed water consists of recirculated ''condensate'' water and purified ''makeup water''. Because the metallic materials it contacts are subject to
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
at high temperatures and pressures, the makeup water is highly purified before use. A system of
water softener Water softening is the removal of calcium, magnesium, and certain other metal cations in hard water. The resulting soft water requires less soap for the same cleaning effort, as soap is not wasted bonding with calcium ions. Soft water also extend ...
s and
ion exchange Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
demineralizers produces water so pure that it coincidentally becomes an electrical insulator, with
conductivity Conductivity may refer to: *Electrical conductivity, a measure of a material's ability to conduct an electric current **Conductivity (electrolytic), the electrical conductivity of an electrolyte in solution **Ionic conductivity (solid state), elec ...
in the range of 0.3–1.0 microsiemens per centimeter. The makeup water in a 500 MWe plant amounts to perhaps 120 US gallons per minute (7.6 L/s) to replace water drawn off from the boiler drums for water purity management, and to also offset the small losses from steam leaks in the system. The feed water cycle begins with condensate water being pumped out of the condenser after traveling through the steam turbines. The condensate flow rate at full load in a 500 MW plant is about 6,000 US gallons per minute (400 L/s). The water is pressurized in two stages, and flows through a series of six or seven intermediate feed water heaters, heated up at each point with steam extracted from an appropriate duct on the turbines and gaining temperature at each stage. Typically, in the middle of this series of feedwater heaters, and before the second stage of pressurization, the condensate plus the makeup water flows through a deaeratorPressurized deaerators
/ref> that removes dissolved air from the water, further purifying and reducing its corrosiveness. The water may be dosed following this point with hydrazine, a chemical that removes the remaining oxygen in the water to below 5 parts per billion (ppb). It is also dosed with pH control agents such as
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
or
morpholine Morpholine is an organic chemical compound having the chemical formula O( C H2CH2)2 NH. This heterocycle features both amine and ether functional groups. Because of the amine, morpholine is a base; its conjugate acid is called morpholinium. Fo ...
to keep the residual
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
ity low and thus non-corrosive.


Boiler operation

The boiler is a rectangular furnace about on a side and tall. Its walls are made of a web of high pressure steel tubes about in diameter. Fuel such as
pulverized coal Coal dust is a fine powdered form of which is created by the crushing, grinding, or pulverizing of coal. Because of the brittle nature of coal, coal dust can be created during mining, transportation, or by mechanically handling coal. It is a form ...
is air-blown into the furnace through burners located at the four corners, or along one wall, or two opposite walls, and it is ignited to rapidly burn, forming a large fireball at the center. The thermal radiation of the fireball heats the water that circulates through the boiler tubes near the boiler perimeter. The water circulation rate in the boiler is three to four times the throughput. As the water in the
boiler A boiler is a closed vessel in which fluid (generally water) is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central h ...
circulates it absorbs heat and changes into steam. It is separated from the water inside a drum at the top of the furnace. The saturated steam is introduced into superheat pendant tubes that hang in the hottest part of the combustion gases as they exit the furnace. Here the steam is superheated to to prepare it for the turbine. Plants that use gas turbines to heat the water for conversion into steam use boilers known as
heat recovery steam generator A heat recovery steam generator (''HRSG'') is an energy recovery heat exchanger that recovers heat from a hot gas stream, such as a combustion turbine or other waste gas stream. It produces steam that can be used in a process (cogeneration) or u ...
s (HRSG). The exhaust heat from the gas turbines is used to make superheated steam that is then used in a conventional water-steam generation cycle, as described in the gas turbine combined-cycle plants section.


Boiler furnace and steam drum

The water enters the boiler through a section in the convection pass called the economizer. From the economizer it passes to the steam drum and from there it goes through downcomers to inlet headers at the bottom of the water walls. From these headers the water rises through the water walls of the furnace where some of it is turned into steam and the mixture of water and steam then re-enters the steam drum. This process may be driven purely by
natural circulation Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convecti ...
(because the water is the downcomers is denser than the water/steam mixture in the water walls) or assisted by pumps. In the steam drum, the water is returned to the downcomers and the steam is passed through a series of
steam separator A steam separator, sometimes referred to as a moisture separator or steam drier, is a device for separating water droplets from steam. The simplest type of steam separator is the steam dome on a steam locomotive. Stationary boilers and nuclear r ...
s and dryers that remove water droplets from the steam. The dry steam then flows into the superheater coils. The boiler furnace auxiliary equipment includes
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when dead ...
feed nozzles and igniter guns, soot blowers, water lancing, and observation ports (in the furnace walls) for observation of the furnace interior. Furnace explosions due to any accumulation of combustible gases after a trip-out are avoided by flushing out such gases from the combustion zone before igniting the coal. The steam drum (as well as the
superheater A superheater is a device used to convert saturated steam or wet steam into superheated steam or dry steam. Superheated steam is used in steam turbines for electricity generation, steam engines, and in processes such as steam reforming. There ...
coils and headers) have air vents and drains needed for initial start up.


Superheater

Fossil fuel power stations often have a
superheater A superheater is a device used to convert saturated steam or wet steam into superheated steam or dry steam. Superheated steam is used in steam turbines for electricity generation, steam engines, and in processes such as steam reforming. There ...
section in the steam generating furnace. The steam passes through drying equipment inside the steam drum on to the superheater, a set of tubes in the furnace. Here the steam picks up more energy from hot flue gases outside the tubing, and its temperature is now superheated above the saturation temperature. The superheated steam is then piped through the main steam lines to the valves before the high-pressure turbine. Nuclear-powered steam plants do not have such sections but produce steam at essentially saturated conditions. Experimental nuclear plants were equipped with fossil-fired superheaters in an attempt to improve overall plant operating cost.


Steam condensing

The condenser condenses the steam from the exhaust of the turbine into liquid to allow it to be pumped. If the condenser can be made cooler, the pressure of the exhaust steam is reduced and efficiency of the cycle increases. The surface condenser is a
shell and tube heat exchanger A shell and tube heat exchanger is a class of heat exchanger designs. It is the most common type of heat exchanger in oil refineries and other large chemical processes, and is suited for higher-pressure applications. As its name implies, this ty ...
in which cooling water is circulated through the tubes. The exhaust steam from the low-pressure turbine enters the shell, where it is cooled and converted to condensate (water) by flowing over the tubes as shown in the adjacent diagram. Such condensers use steam ejectors or
rotary motor An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force ...
-driven exhausts for continuous removal of air and gases from the steam side to maintain vacuum. For best efficiency, the temperature in the condenser must be kept as low as practical in order to achieve the lowest possible pressure in the condensing steam. Since the condenser temperature can almost always be kept significantly below 100 °C where the
vapor pressure Vapor pressure (or vapour pressure in English-speaking countries other than the US; see spelling differences) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases ...
of water is much less than atmospheric pressure, the condenser generally works under vacuum. Thus leaks of non-condensible air into the closed loop must be prevented. Typically the cooling water causes the steam to condense at a temperature of about and that creates an
absolute pressure Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure ...
in the condenser of about , i.e. a vacuum of about relative to atmospheric pressure. The large decrease in volume that occurs when water vapor condenses to liquid creates the vacuum that generally increases the efficiency of the turbines. The limiting factor is the temperature of the cooling water and that, in turn, is limited by the prevailing average climatic conditions at the power station's location (it may be possible to lower the temperature beyond the turbine limits during winter, causing excessive condensation in the turbine). Plants operating in hot climates may have to reduce output if their source of condenser cooling water becomes warmer; unfortunately this usually coincides with periods of high electrical demand for
air conditioning Air conditioning, often abbreviated as A/C or AC, is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling ...
. The condenser generally uses either circulating cooling water from a
cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat and c ...
to reject waste heat to the atmosphere, or
once-through cooling Cooling tower and water discharge of a nuclear power plant Water cooling is a method of heat removal from components and industrial equipment. Evaporative cooling using water is often more efficient than air cooling. Water is inexpensive and non ...
(OTC) water from a river, lake or ocean. In the United States, about two-thirds of power plants use OTC systems, which often have significant adverse environmental impacts. The impacts include
thermal pollution Thermal pollution, sometimes called "thermal enrichment", is the degradation of water quality by any process that changes ambient water temperature. Thermal pollution is the rise or fall in the temperature of a natural body of water caused by hum ...
and killing large numbers of fish and other aquatic species at cooling water intakes. The heat absorbed by the circulating cooling water in the condenser tubes must also be removed to maintain the ability of the water to cool as it circulates. This is done by pumping the warm water from the condenser through either natural draft, forced draft or induced draft
cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat and c ...
s (as seen in the adjacent image) that reduce the temperature of the water by evaporation, by about 11 to 17 °C (20 to 30 °F)—expelling
waste heat Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility ( ...
to the atmosphere. The circulation flow rate of the cooling water in a 500 MW unit is about 14.2 m3/s (500 ft3/s or 225,000 US gal/min) at full load. The condenser tubes are typically made stainless steel or other alloys to resist corrosion from either side. Nevertheless, they may become internally fouled during operation by bacteria or algae in the cooling water or by mineral scaling, all of which inhibit heat transfer and reduce
thermodynamic efficiency In thermodynamics, the thermal efficiency (\eta_) is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc. For a h ...
. Many plants include an automatic cleaning system that circulates sponge rubber balls through the tubes to scrub them clean without the need to take the system off-line. The cooling water used to condense the steam in the condenser returns to its source without having been changed other than having been warmed. If the water returns to a local water body (rather than a circulating cooling tower), it is often tempered with cool 'raw' water to prevent thermal shock when discharged into that body of water. Another form of condensing system is the
air-cooled condenser Air-cooled engines rely on the circulation of air directly over heat dissipation fins or hot areas of the engine to cool them in order to keep the engine within operating temperatures. In all combustion engines, a great percentage of the heat ge ...
. The process is similar to that of a radiator and fan. Exhaust heat from the low-pressure section of a steam turbine runs through the condensing tubes, the tubes are usually finned and ambient air is pushed through the fins with the help of a large fan. The steam condenses to water to be reused in the water-steam cycle. Air-cooled condensers typically operate at a higher temperature than water-cooled versions. While saving water, the efficiency of the cycle is reduced (resulting in more carbon dioxide per megawatt-hour of electricity). From the bottom of the condenser, powerful
condensate pump A condensate pump is a specific type of pump used to pump the condensate (water) produced in an HVAC (heating or cooling), refrigeration, condensing boiler furnace, or steam system. Applications Condensate pumps may be used to pump the condensate ...
s recycle the condensed steam (water) back to the water/steam cycle.


Reheater

Power station furnaces may have a reheater section containing tubes heated by hot flue gases outside the tubes. Exhaust steam from the high-pressure turbine is passed through these heated tubes to collect more energy before driving the intermediate and then low-pressure turbines.


Air path

External fans are provided to give sufficient air for combustion. The Primary air fan takes air from the atmosphere and, first warms the air in the air preheater for better economy. Primary air then passes through the coal pulverizers, and carries the coal dust to the burners for injection into the furnace. The Secondary air fan takes air from the atmosphere and, first warms the air in the air preheater for better economy. Secondary air is mixed with the coal/primary air flow in the burners. The induced draft fan assists the FD fan by drawing out combustible gases from the furnace, maintaining slightly below atmospheric pressure in the furnace to avoid leakage of combustion products from the boiler casing.


Steam turbine generator

A steam turbine generator consists of a series of steam
turbine A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced by a turbine can be used for generating e ...
s interconnected to each other and a generator on a common shaft.


Steam turbine

There is usually a high-pressure turbine at one end, followed by an intermediate-pressure turbine, and finally one, two, or three low-pressure turbines, and the shaft that connects to the generator. As steam moves through the system and loses pressure and thermal energy, it expands in volume, requiring increasing diameter and longer blades at each succeeding stage to extract the remaining energy. The entire rotating mass may be over 200 metric tons and long. It is so heavy that it must be kept turning slowly even when shut down (at 3
rpm Revolutions per minute (abbreviated rpm, RPM, rev/min, r/min, or with the notation min−1) is a unit of rotational speed or rotational frequency for rotating machines. Standards ISO 80000-3:2019 defines a unit of rotation as the dimensi ...
) so that the shaft will not bow even slightly and become unbalanced. This is so important that it is one of only six functions of blackout emergency power batteries on site. (The other five being
emergency lighting An emergency light is a battery-backed lighting device that switches on automatically when a building experiences a power outage. In the United States, emergency lights are standard in new commercial and high occupancy residential buildings, ...
, communication, station alarms, generator hydrogen seal system, and turbogenerator lube oil.) For a typical late 20th-century power station, superheated steam from the boiler is delivered through diameter piping at and to the high-pressure turbine, where it falls in pressure to and to in temperature through the stage. It exits via diameter cold reheat lines and passes back into the boiler, where the steam is reheated in special reheat pendant tubes back to . The hot reheat steam is conducted to the intermediate pressure turbine, where it falls in both temperature and pressure and exits directly to the long-bladed low-pressure turbines and finally exits to the condenser.


Turbo generator

The generator, typically about long and in diameter, contains a stationary
stator The stator is the stationary part of a rotary system, found in electric generators, electric motors, sirens, mud motors or biological rotors. Energy flows through a stator to or from the rotating component of the system. In an electric mot ...
and a spinning rotor, each containing miles of heavy copper conductor. There is generally no permanent magnet, thus preventing
black start A black start is the process of restoring an electric power station or a part of an electric grid to operation without relying on the external electric power transmission network to recover from a total or partial shutdown.Knight, U.G. ''Power ...
s. In operation it generates up to 21,000
ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
s at 24,000 volts AC (504 MWe) as it spins at either 3,000 or 3,600
rpm Revolutions per minute (abbreviated rpm, RPM, rev/min, r/min, or with the notation min−1) is a unit of rotational speed or rotational frequency for rotating machines. Standards ISO 80000-3:2019 defines a unit of rotation as the dimensi ...
, synchronized to the power grid. The rotor spins in a sealed chamber cooled with hydrogen gas, selected because it has the highest known
heat transfer coefficient In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ). I ...
of any gas and for its low viscosity, which reduces
windage Windage is a term used in aerodynamics, firearms ballistics, and automobiles. Usage Aerodynamics Windage is a force created on an object by friction when there is relative movement between air and the object. Windage loss is the reduction in ...
losses. This system requires special handling during startup, with air in the chamber first displaced by carbon dioxide before filling with hydrogen. This ensures that a highly explosive hydrogen– oxygen environment is not created. The utility frequency, power grid frequency is 60 Hz across North America and 50 Hz in Europe, Oceania, Asia (Korea and parts of Japan are notable exceptions), and parts of Africa. The desired frequency affects the design of large turbines, since they are highly optimized for one particular speed. The electricity flows to a distribution yard where transformers increase the voltage for transmission to its destination. The turbo generator, steam turbine-driven generators have auxiliary systems enabling them to work satisfactorily and safely. The steam turbine generator, being rotating equipment, generally has a heavy, large-diameter shaft. The shaft therefore requires not only supports but also has to be kept in position while running. To minimize the frictional resistance to the rotation, the shaft has a number of bearing (mechanical), bearings. The bearing shells, in which the shaft rotates, are lined with a low-friction material like Babbitt metal. Oil lubrication is provided to further reduce the friction between shaft and bearing surface and to limit the heat generated.


Stack gas path and cleanup

As the combustion flue gas exits the boiler it is routed through a rotating flat basket of metal mesh which picks up heat and returns it to incoming fresh air as the basket rotates. This is called the
air preheater An air preheater is any device designed to heat air before another process (for example, combustion in a boiler With the primary objective of increasing the thermal efficiency of the process. They may be used alone or to replace a recuperative ...
. The gas exiting the boiler is laden with fly ash, which are tiny spherical ash particles. The flue gas contains nitrogen along with combustion products carbon dioxide, sulfur dioxide, and NOx, nitrogen oxides. The fly ash is removed by dust collector#Fabric filters, fabric bag filters in baghouses or
electrostatic precipitator An electrostatic precipitator (ESP) is a filterless device that removes fine particles, like dust and smoke, from a flowing gas using the force of an induced electrostatic charge minimally impeding the flow of gases through the unit. In con ...
s. Once removed, the fly ash byproduct can sometimes be used in the manufacturing of concrete. This cleaning up of flue gases, however, only occurs in plants that are fitted with the appropriate technology. Still, the majority of coal-fired power stations in the world do not have these facilities. Legislation in Europe has been efficient to reduce flue gas pollution. Japan has been using flue gas cleaning technology for over 30 years and the US has been doing the same for over 25 years. China is now beginning to grapple with the pollution caused by coal-fired power stations. Where required by law, the sulfur and nitrogen oxide pollutants are removed by flue-gas desulfurization, stack gas scrubbers which use a pulverized limestone or other alkaline wet slurry to remove those pollutants from the exit stack gas. Other devices use catalytic converter, catalysts to remove nitrous oxide compounds from the flue-gas stream. The gas travelling up the flue-gas stack may by this time have dropped to about . A typical flue-gas stack may be tall to disperse the remaining flue gas components in the atmosphere. The tallest flue-gas stack in the world is tall at the Ekibastuz GRES-2 Power Station in Kazakhstan. In the United States and a number of other countries, atmospheric dispersion modeling studies are required to determine the flue-gas stack height needed to comply with the local air pollution regulations. The United States also requires the height of a flue-gas stack to comply with what is known as the "good engineering practice" (GEP) stack height. In the case of existing flue gas stacks that exceed the GEP stack height, any air pollution dispersion modeling studies for such stacks must use the GEP stack height rather than the actual stack height.


Auxiliary systems


Boiler make-up water treatment plant and storage

Since there is continuous withdrawal of steam and continuous return of condensation, condensate to the boiler, losses due to boiler blowdown, blowdown and leakages have to be made up to maintain a desired water level in the boiler steam drum. For this, continuous make-up water is added to the boiler water system. Impurities in the raw water input to the plant generally consist of calcium and magnesium salts which impart water hardness, hardness to the water. Hardness in the make-up water to the boiler will form deposits on the tube water surfaces which will lead to overheating and failure of the tubes. Thus, the salts have to be removed from the water, and that is done by a water demineralising treatment plant (DM). A DM plant generally consists of cation, anion, and mixed bed exchangers. Any ions in the final water from this process consist essentially of hydrogen ions and hydroxide ions, which recombine to form pure water. Very pure DM water becomes highly corrosive once it absorbs oxygen from the atmosphere because of its very high affinity for oxygen. The capacity of the DM plant is dictated by the type and quantity of salts in the raw water input. However, some storage is essential as the DM plant may be down for maintenance. For this purpose, a storage tank is installed from which DM water is continuously withdrawn for boiler make-up. The storage tank for DM water is made from materials not affected by corrosive water, such as polyvinyl chloride, PVC. The piping and valves are generally of stainless steel. Sometimes, a steam blanketing arrangement or stainless steel doughnut float is provided on top of the water in the tank to avoid contact with air. DM water make-up is generally added at the steam space of the surface condenser (i.e., the vacuum side). This arrangement not only sprays the water but also DM water gets deaerated, with the dissolved gases being removed by a de-aerator through an ejector attached to the condenser.


Fuel preparation system

In coal-fired power stations, the raw feed coal from the coal storage area is first crushed into small pieces and then conveyed to the coal feed hoppers at the boilers. The coal is next pulverizers, pulverized into a very fine powder. The pulverizers may be ball mills, rotating drum mill (grinding), grinders, or other types of grinders. Some power stations burn
fuel oil Fuel oil is any of various fractions obtained from the distillation of petroleum (crude oil). Such oils include distillates (the lighter fractions) and residues (the heavier fractions). Fuel oils include heavy fuel oil, marine fuel oil (MFO), bun ...
rather than coal. The oil must kept warm (above its pour point) in the fuel oil storage tanks to prevent the oil from congealing and becoming unpumpable. The oil is usually heated to about 100 °C before being pumped through the furnace fuel oil spray nozzles. Boilers in some power stations use natural-gas processing, processed natural gas as their main fuel. Other power stations may use processed natural gas as auxiliary fuel in the event that their main fuel supply (coal or oil) is interrupted. In such cases, separate gas burners are provided on the boiler furnaces.


Barring gear

Barring engine, Barring gear (or "turning gear") is the mechanism provided to rotate the turbine generator shaft at a very low speed after unit stoppages. Once the unit is "tripped" (i.e., the steam inlet valve is closed), the turbine coasts down towards standstill. When it stops completely, there is a tendency for the turbine shaft to deflect or bend if allowed to remain in one position too long. This is because the heat inside the turbine casing tends to concentrate in the top half of the casing, making the top half portion of the shaft hotter than the bottom half. The shaft therefore could warp or bend by millionths of inches. This small shaft deflection, only detectable by eccentricity meters, would be enough to cause damaging vibrations to the entire steam turbine generator unit when it is restarted. The shaft is therefore automatically turned at low speed (about one percent rated speed) by the barring gear until it has cooled sufficiently to permit a complete stop.


Oil system

An auxiliary oil system pump is used to supply oil at the start-up of the steam turbine generator. It supplies the hydraulic oil system required for steam turbine's main inlet steam stop valve, the governing control valves, the bearing and seal oil systems, the relevant hydraulic relays and other mechanisms. At a preset speed of the turbine during start-ups, a pump driven by the turbine main shaft takes over the functions of the auxiliary system.


Generator cooling

While small generators may be cooled by air drawn through filters at the inlet, larger units generally require special cooling arrangements. Hydrogen gas cooling, in an oil-sealed casing, is used because it has the highest known
heat transfer coefficient In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ). I ...
of any gas and for its low viscosity which reduces
windage Windage is a term used in aerodynamics, firearms ballistics, and automobiles. Usage Aerodynamics Windage is a force created on an object by friction when there is relative movement between air and the object. Windage loss is the reduction in ...
losses. This system requires special handling during start-up, with air in the generator enclosure first displaced by carbon dioxide before filling with hydrogen. This ensures that the highly flammable hydrogen does not mix with oxygen in the air. The hydrogen pressure inside the casing is maintained slightly higher than atmospheric pressure to avoid outside air ingress, and up to about two atmospheres pressure to improve heat transfer efficiency. The hydrogen must be sealed against outward leakage where the shaft emerges from the casing. Mechanical seals around the shaft are installed with a very small annular gap to avoid rubbing between the shaft and the seals on smaller turbines, with labyrinth type seals on larger machines.. Seal oil is used to prevent the hydrogen gas leakage to atmosphere. The generator also uses water cooling. Since the generator coils are at a potential of about 22 kilovolt, kV, an insulating barrier such as Teflon is used to interconnect the water line and the generator high-voltage windings. Demineralized water of low conductivity is used.


Generator high-voltage system

The generator voltage for modern utility-connected generators ranges from in smaller units to in larger units. The generator high-voltage leads are normally large aluminium channels because of their high current as compared to the cables used in smaller machines. They are enclosed in well-grounded aluminium bus ducts and are supported on suitable insulators. The generator high-voltage leads are connected to step-up transformers for connecting to a high-voltage electrical substation (usually in the range of 115 kV to 765 kV) for further transmission by the local power grid. The necessary power-system protection, protection and metering devices are included for the high-voltage leads. Thus, the steam turbine generator and the transformer form one unit. Smaller units may share a common generator step-up transformer with individual circuit breakers to connect the generators to a common bus.


Monitoring and alarm system

Most of the power station operational controls are automatic. However, at times, manual intervention may be required. Thus, the plant is provided with monitors and alarm systems that alert the plant operators when certain operating parameters are seriously deviating from their normal range.


Battery-supplied emergency lighting and communication

A central battery system consisting of lead–acid battery, lead–acid cell units is provided to supply emergency electric power, when needed, to essential items such as the power station's control systems, communication systems, generator hydrogen seal system, turbine lube oil pumps, and emergency lighting. This is essential for a safe, damage-free shutdown of the units in an emergency situation.


Circulating water system

To dissipate the thermal load of main turbine exhaust steam, condensate from gland steam condenser, and condensate from Low Pressure Heater by providing a continuous supply of cooling water to the main condenser thereby leading to condensation. The consumption of cooling water by inland power stations is estimated to reduce power availability for the majority of thermal power stations by 2040–2069.


See also

* Boiler * Biochar#Centralized, decentralized, and mobile systems, Biochar processing in thermal power stations *
Cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
* Cooling tower * Cost of electricity by source * Energy crop * Flue-gas stack * Fossil fuel power station * Geothermal power * Integrated gasification combined cycle * Iron powder * List of largest power stations * List of thermal power station failures * Nuclear power * Powership * Power station * Surface condenser * Water-tube boiler


References


External links


Thermal Power Plant:Indian Context

Conventional coal-fired power plant







Steam jet ejector performance guidelines
* and video lectures by S. Banerjee on "Thermal Power Plants" {{DEFAULTSORT:Thermal Power Station Power station technology Energy conversion Chemical process engineering Steam power Thermal power plants,