Definition
The International Federation of Surveyors defines the function of surveying as follows:A surveyor is a professional person with the academic qualifications and technical expertise to conduct one, or more, of the following activities; * to determine, measure and represent land, three-dimensional objects, point-fields and trajectories; * to assemble and interpret land and geographically related information, * to use that information for the planning and efficient administration of the land, the sea and any structures thereon; and, * to conduct research into the above practices and to develop them.
History
Ancient history
Modern era
20th century
21st century
The theodolite, total station, and Real Time Kinematic, RTK Global Positioning System, GPS survey remain the primary methods in use. Remote sensing and satellite imagery continue to improve and become cheaper, allowing more commonplace use. Prominent new technologies include three-dimensional (3D) scanning and use of lidar for topographical surveys. Unmanned aerial vehicle, UAV technology along with photogrammetry, photogrammetric image processing is also appearing.Equipment
Hardware
The main surveying instruments in use around the world are the theodolite, Tape measure, measuring tape, total station, 3D scanners, Global Positioning System, GPS/GNSS, dumpy level, level and Level staff, rod. Most instruments screw onto a Tripod (surveying), tripod when in use. Tape measures are often used for measurement of smaller distances. 3D scanners and various forms of aerial imagery are also used. The theodolite is an instrument for the measurement of angles. It uses two separate ''circles'', ''protractors'' or ''alidades'' to measure angles in the horizontal and the vertical plane. A telescope mounted on trunnions is aligned vertically with the target object. The whole upper section rotates for horizontal alignment. The vertical circle measures the angle that the telescope makes against the vertical, known as the zenith angle. The horizontal circle uses an upper and lower plate. When beginning the survey, the surveyor points the instrument in a known direction (bearing), and clamps the lower plate in place. The instrument can then rotate to measure the bearing to other objects. If no bearing is known or direct angle measurement is wanted, the instrument can be set to zero during the initial sight. It will then read the angle between the initial object, the theodolite itself, and the item that the telescope aligns with. The gyrotheodolite is a form of theodolite that uses a gyroscope to orient itself in the absence of reference marks. It is used in underground applications. The total station is a development of the theodolite with an electronic distance measurement device (EDM). A total station can be used for leveling when set to the horizontal plane. Since their introduction, total stations have shifted from optical-mechanical to fully electronic devices. Modern top-of-the-line total stations no longer need a reflector or prism to return the light pulses used for distance measurements. They are fully robotic, and can even e-mail point data to a remote computer and connect to satellite positioning systems, such as Global Positioning System. Real Time Kinematic GPS systems have significantly increased the speed of surveying, and they are now horizontally accurate to within 1 cm ± 1 ppm in real-time, while vertically it is currently about half of that to within 2 cm ± 2 ppm. GPS surveying differs from other GPS uses in the equipment and methods used. Static GPS uses two receivers placed in position for a considerable length of time. The long span of time lets the receiver compare measurements as the satellites orbit. The changes as the satellites orbit also provide the measurement network with well conditioned geometry. This produces an accurate Baseline (surveying), baseline that can be over 20 km long. RTK surveying uses one static antenna and one roving antenna. The static antenna tracks changes in the satellite positions and atmospheric conditions. The surveyor uses the roving antenna to measure the points needed for the survey. The two antennas use a radio link that allows the static antenna to send corrections to the roving antenna. The roving antenna then applies those corrections to the GPS signals it is receiving to calculate its own position. RTK surveying covers smaller distances than static methods. This is because divergent conditions further away from the base reduce accuracy. Surveying instruments have characteristics that make them suitable for certain uses. Theodolites and levels are often used by constructors rather than surveyors in first world countries. The constructor can perform simple survey tasks using a relatively cheap instrument. Total stations are workhorses for many professional surveyors because they are versatile and reliable in all conditions. The productivity improvements from a GPS on large scale surveys makes them popular for major infrastructure or data gathering projects. One-person robotic-guided total stations allow surveyors to measure without extra workers to aim the telescope or record data. A fast but expensive way to measure large areas is with a helicopter, using a GPS to record the location of the helicopter and a laser scanner to measure the ground. To increase precision, surveyors place beacons on the ground (about apart). This method reaches precisions between 5–40 cm (depending on flight height). Surveyors use ancillary equipment such as tripods and instrument stands; staves and beacons used for sighting purposes; Personal protective equipment, PPE; vegetation clearing equipment; digging implements for finding survey markers buried over time; hammers for placements of markers in various surfaces and structures; and portable radios for communication over long lines of sight.Software
Land surveyors, construction professionals, and civil engineers using total station, GPS, 3D scanners, and other collector data use Land Surveying Software to increase efficiency, accuracy, and productivity. Land Surveying Software is a staple of contemporary land surveying. Typically, much if not all of the Technical drawing, drafting and some of the designing for Site plan, plans and plats of the surveyed property is done by the surveyor, and nearly everyone working in the area of drafting today (2021) utilizes Computer-aided design, CAD software and hardware both on PC, and more and more in newer generation data collectors in the field as well. Other computer platforms and tools commonly used today by surveyors are offered online by the U.S. Federal Government and other governments' survey agencies, such as the National Geodetic Survey and the Continuously Operating Reference Station, CORS network, to get automated corrections and conversions for collected Real-time kinematic, GPS data, and the data Spatial reference system, coordinate systems themselves.Techniques
Distance measurement
Angle measurement
Historically, horizontal angles were measured by using a Circumferentor, compass to provide a magnetic bearing or azimuth. Later, more precise scribed discs improved angular resolution. Mounting telescopes with reticles atop the disc allowed more precise sighting (see theodolite). Levels and calibrated circles allowed the measurement of vertical angles. Vernier scale, Verniers allowed measurement to a fraction of a degree, such as with a turn-of-the-century Transit (surveying), transit. The plane table provided a graphical method of recording and measuring angles, which reduced the amount of mathematics required. In 1829 Francis Ronalds invented a Reflecting instrument#Surveying sector, reflecting instrument for recording angles graphically by modifying the Octant (instrument), octant. By observing the bearing from every vertex in a figure, a surveyor can measure around the figure. The final observation will be between the two points first observed, except with a 180° difference. This is called a ''close''. If the first and last bearings are different, this shows the error in the survey, called the ''angular misclose''. The surveyor can use this information to prove that the work meets the expected standards.Levelling
Determining position
The primary way of determining one's position on the earth's surface when no known positions are nearby is by astronomic observations. Observations to the sun, moon and stars could all be made using navigational techniques. Once the instrument's position and bearing to a star is determined, the bearing can be transferred to a reference point on the earth. The point can then be used as a base for further observations. Survey-accurate astronomic positions were difficult to observe and calculate and so tended to be a base off which many other measurements were made. Since the advent of the GPS system, astronomic observations are rare as GPS allows adequate positions to be determined over most of the surface of the earth.Reference networks
Datum and coordinate systems
Many surveys do not calculate positions on the surface of the earth, but instead measure the relative positions of objects. However, often the surveyed items need to be compared to outside data, such as boundary lines or previous survey's objects. The oldest way of describing a position is via latitude and longitude, and often a height above sea level. As the surveying profession grew it created Cartesian coordinate systems to simplify the mathematics for surveys over small parts of the earth. The simplest coordinate systems assume that the earth is flat and measure from an arbitrary point, known as a 'datum' (singular form of data). The coordinate system allows easy calculation of the distances and direction between objects over small areas. Large areas distort due to the earth's curvature. North is often defined as true north at the datum. For larger regions, it is necessary to model the shape of the earth using an ellipsoid or a geoid. Many countries have created coordinate-grids customized to lessen error in their area of the earth.Errors and accuracy
A basic tenet of surveying is that no measurement is perfect, and that there will always be a small amount of error. There are three classes of survey errors: *''Gross errors or blunders:'' Errors made by the surveyor during the survey. Upsetting the instrument, misaiming a target, or writing down a wrong measurement are all gross errors. A large gross error may reduce the accuracy to an unacceptable level. Therefore, surveyors use redundant measurements and independent checks to detect these errors early in the survey. *''Systematic:'' Errors that follow a consistent pattern. Examples include effects of temperature on a chain or EDM measurement, or a poorly adjusted spirit-level causing a tilted instrument or target pole. Systematic errors that have known effects can be compensated or corrected. *''Random:'' Random errors are small unavoidable fluctuations. They are caused by imperfections in measuring equipment, eyesight, and conditions. They can be minimized by redundancy of measurement and avoiding unstable conditions. Random errors tend to cancel each other out, but checks must be made to ensure they are not propagating from one measurement to the next. Surveyors avoid these errors by calibrating their equipment, using consistent methods, and by good design of their reference network. Repeated measurements can be averaged and any outlier measurements discarded. Independent checks like measuring a point from two or more locations or using two different methods are used, and errors can be detected by comparing the results of two or more measurements, thus utilizing Redundancy (engineering), redundancy. Once the surveyor has calculated the level of the errors in his or her work, it is adjustment of observations, adjusted. This is the process of distributing the error between all measurements. Each observation is weighted according to how much of the total error it is likely to have caused and part of that error is allocated to it in a proportional way. The most common methods of adjustment are the Nathaniel Bowditch, Bowditch method, also known as the compass rule, and the least squares, principle of least squares method. The surveyor must be able to distinguish between accuracy and precision. In the United States, surveyors and civil engineers use units of feet wherein a survey foot breaks down into 10ths and 100ths. Many deed descriptions containing distances are often expressed using these units (125.25 ft). On the subject of accuracy, surveyors are often held to a standard of one one-hundredth of a foot; about 1/8 inch. Calculation and mapping tolerances are much smaller wherein achieving near-perfect closures are desired. Though tolerances will vary from project to project, in the field and day to day usage beyond a 100th of a foot is often impractical.Types
Local organisations or regulatory bodies class specializations of surveying in different ways. Broad groups are: * ''As-built survey'': a survey that documents the location of recently constructed elements of a construction project. As-built surveys are done for record, completion evaluation and payment purposes. An as-built survey is also known as a 'works as executed survey'. As built surveys are often presented in red or redline and laid over existing plans for comparison with design information. * ''Cadastral surveying, Cadastral or boundary surveying'': a survey that establishes or re-establishes boundaries of a parcel using a Land description, legal description. It involves the setting or restoration of monuments or markers at the corners or along the lines of the parcel. These take the form of iron rods, Pipe (material), pipes, or concrete monuments in the ground, or Nail (fastener), nails set in concrete or asphalt. The ''ALTA/ACSM'' Land Title Survey is a standard proposed by the American Land Title Association and the American Congress on Surveying and Mapping. It incorporates elements of the boundary survey, mortgage survey, and topographic survey. * ''Control surveying'': Control surveys establish reference points to use as starting positions for future surveys. Most other forms of surveying will contain elements of control surveying. * ''Construction surveying'' * ''Deformation Monitoring, Deformation survey:'' a survey to determine if a structure or object is changing shape or moving. First the positions of points on an object are found. A period of time is allowed to pass and the positions are then re-measured and calculated. Then a comparison between the two sets of positions is made. * ''Dimensional control survey:'' This is a type of survey conducted in or on a non-level surface. Common in the oil and gas industry to replace old or damaged pipes on a like-for-like basis, the advantage of dimensional control survey is that the instrument used to conduct the survey does not need to be level. This is useful in the off-shore industry, as not all platforms are fixed and are thus subject to movement. * ''Engineering surveying'': topographic, layout, and as-built surveys associated with engineering design. They often need geodetic computations beyond normal civil engineering practice. * ''Foundation survey'': a survey done to collect the positional data on a foundation that has been poured and is cured. This is done to ensure that the foundation was constructed in the location, and at the elevation, authorized in the ''plot plan'', ''site plan'', or ''subdivision plan''. * ''Hydrographic survey'': a survey conducted with the purpose of mapping the shoreline and bed of a body of water. Used for navigation, engineering, or resource management purposes. * ''Leveling'': either finds the elevation of a given point or establish a point at a given elevation. * ''National Flood Insurance Program#Removal from NFIP, LOMA survey'': Survey to change base flood line, removing property from a Special Flood Hazard Area, SFHA special flood hazard area. * ''Measured survey'' : a building survey to produce plans of the building. such a survey may be conducted before renovation works, for commercial purpose, or at end of the construction process. * ''Mine survey, Mining surveying'': Mining surveying includes directing the digging of mine shafts and galleries and the calculation of volume of rock. It uses specialised techniques due to the restraints to survey geometry such as vertical shafts and narrow passages. * ''Mortgage survey:'' A ''mortgage survey'' or ''physical survey'' is a simple survey that delineates land boundaries and building locations. It checks for ''Structural encroachment, encroachment'', building setback restrictions and shows nearby flood zones. In many places a mortgage survey is a precondition for a mortgage loan. * ''Photogrammetry, Photographic control survey'': A survey that creates reference marks visible from the air to allow Aerial photography, aerial photographs to be Orthophoto, rectified. * ''Stakeout, layout or setout'': an element of many other surveys where the calculated or proposed position of an object is marked on the ground. This can be temporary or permanent. This is an important component of engineering and cadastral surveying. * ''Structural survey'': a detailed inspection to report upon the physical condition and structural stability of a building or structure. It highlights any work needed to maintain it in good repair. * ''Subdivision'': A boundary survey that splits a property into two or more smaller properties. * ''Topographic survey'': a survey that measures the elevation of points on a particular piece of land, and presents them as contour lines on a plot. * ''Existing conditions'': Similar to a topographic survey but instead focuses more on the specific location of key features and structures as they exist at that time within the surveyed area rather than primarily focusing on the elevation, often used alongside Architectural drawing, architectural drawings and blueprints to locate or place building structures. * ''Underwater survey'': a survey of an underwater site, object, or area.Plane and geodetic surveying
Based on the considerations and true shape of the earth, surveying is broadly classified into two types. ''Plane surveying'' assumes the earth is flat. Curvature and spheroidal shape of the earth is neglected. In this type of surveying all triangles formed by joining survey lines are considered as plane triangles. It is employed for small survey works where errors due to the earth's shape are too small to matter. In ''geodetic surveying'' the curvature of the earth is taken into account while calculating reduced levels, angles, bearings and distances. This type of surveying is usually employed for large survey works. Survey works up to 100 square miles (260 square kilometers ) are treated as plane and beyond that are treated as geodetic. In geodetic surveying necessary corrections are applied to reduced levels, bearings and other observations.Profession
Licensing
Licensing requirements vary with jurisdiction, and are commonly consistent within national borders. Prospective surveyors usually have to receive a degree in surveying, followed by a detailed examination of their knowledge of surveying law and principles specific to the region they wish to practice in, and undergo a period of on-the-job training or portfolio building before they are awarded a license to practise. Licensed surveyors usually receive a post nominal letters, post nominal, which varies depending on where they qualified. The system has replaced older apprenticeship systems. A licensed land surveyor is generally required to sign and seal all plans. The state dictates the format, showing their name and registration number. In many jurisdictions, surveyors must mark their registration number on survey monuments when setting boundary corners. Monuments take the form of capped iron rods, concrete monuments, or nails with washers.Surveying institutions
Building surveying
Most English-speaking countries consider building surveying a distinct profession. They have their own professional associations and licensing requirements. A building surveyor can provide technical building advice on existing buildings, new buildings, design, compliance with regulations such as planning and building control. A building surveyor normally acts on behalf of his or her client ensuring that their vested interests remain protected. The Royal Institution of Chartered Surveyors (RICS) is a world-recognised governing body for those working within the built environment.Cadastral surveying
One of the primary roles of the land surveyor is to determine the boundary of real property on the ground. The surveyor must determine where the adjoining landowners wish to put the boundary. The boundary is established in legal documents and plans prepared by attorneys, engineers, and land surveyors. The surveyor then puts monuments on the corners of the new boundary. They might also find or resurvey the corners of the property monumented by prior surveys. Cadastral land surveyors are licensed by governments. The cadastral survey branch of the Bureau of Land Management (BLM) conducts most cadastral surveys in the United States. They consult with US Forest Service, Forest Service, National Park Service, US Army Corps of Engineers, Army Corps of Engineers, Bureau of Indian Affairs, US Fish and Wildlife Service, Fish and Wildlife Service, US Bureau of Reclamation, Bureau of Reclamation, and others. The BLM used to be known as the General Land Office (GLO). In states organized per the Public Land Survey System (PLSS), surveyors must carry out BLM cadastral surveys under that system. Cadastral surveyors often have to work around changes to the earth that obliterate or damage boundary monuments. When this happens, they must consider evidence that is not recorded on the title deed. This is known as extrinsic evidence.Richards, D., & Hermansen, K. (1995). Use of extrinsic evidence to aid interpretation of deeds. Journal of Surveying Engineering, (121), 178.Noteworthy surveyors
Three of the four U.S. Presidents on Mount Rushmore were land surveyors. George Washington, Thomas Jefferson, and Abraham Lincoln Surveying in early America, surveyed colonial or frontier territories prior to serving office. David T. Abercrombie practiced land surveying before starting an outfitter store of excursion goods. The business would later turn into Abercrombie & Fitch lifestyle clothing store. Percy Fawcett, Percy Harrison Fawcett was a British surveyor that explored the jungles of South America attempting to find the Lost City of Z. His biography and expeditions were recounted in the book The Lost City of Z (book), ''The Lost City of Z'' and were later adapted on The Lost City of Z (film), film screen. Inō Tadataka produced the first map of Japan using modern surveying techniques starting in 1800, at the age of 55.See also
* * * * * * * *References
Further reading
* * Keay J (2000), ''The Great Arc: The Dramatic Tale of How India was Mapped and Mount Everest, Everest was Named'', Harper Collins, 182pp, . * Pugh J C (1975), ''Surveying for Field Scientists'', Methuen, 230pp, * Genovese I (2005), ''Definitions of Surveying and Associated Terms'', ACSM, 314pp, . * Public Land Survey System Foundation (2009) ''Manual of Surveying Instructions For the Survey of the Public Lands of the United States''External links