HOME

TheInfoList



OR:

Submarine groundwater discharge (SGD) is a hydrological process which commonly occurs in coastal areas. It is described as submarine inflow of fresh-, and brackish groundwater from land into the sea. Submarine Groundwater Discharge is controlled by several forcing mechanisms, which cause a hydraulic gradient between land and sea.William C.Burnett, Bokuniewicz, Henry, Huettel, Markus, Moore, Willard S., Taniguchi, Makoto. "Groundwater and pore water inputs to the coastal zone", ''Biogeochemistry'', Volume 66, 2003, Page 3–33. Considering the different regional settings the discharge occurs either as (1) a focused flow along fractures in karst and rocky areas, (2) a dispersed flow in soft sediments, or (3) a recirculation of seawater within marine sediments. Submarine Groundwater Discharge plays an important role in coastal biogeochemical processes and hydrological cycles such as the formation of offshore plankton blooms, hydrological cycles, and the release of nutrients, trace elements and gases. It affects coastal ecosystems and has been used as a freshwater resource by some local communities for millennia.


Forcing mechanisms

In coastal areas the groundwater and seawater flows are driven by a variety of factors. Both types of water can circulate in marine sediments due to tidal pumping, waves, bottom currents or density driven transport processes. Meteoric freshwaters can discharge along confined and unconfined aquifers into the sea or the oppositional process of seawater intruding into groundwater charged aquifers can take place. The flow of both fresh and sea water is primarily controlled by the hydraulic gradients between land and sea and differences in the densities between both waters and the permeabilities of the sediments. According to Drabbe and Badon-Ghijben (1888) and Herzberg (1901), the thickness of a freshwater lens below sea level (z) corresponds with the thickness of the freshwater level above sea level (h) as: z= ρf/((ρs-ρf))*h With z being the thickness between the saltwater-freshwater interface and the sea level, h being the thickness between the top of the freshwater lens and the sea level, ρf being the density of freshwater and ρs being the density of saltwater. Including the densities of freshwater (ρf = 1.00 g •cm-3) and seawater (ρs = 1.025 g •cm-3) equation (2) simplifies to: z=40*h Together with
Darcy's Law Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch o ...
, the length of a salt wedge from the shoreline into the hinterland can be calculated: L= ((ρs-ρf)Kf m)/(ρf Q) With Kf being the hydraulic conductivity, m the aquifer thickness and Q the discharge rate. Assuming an isotropic aquifer system the length of a salt wedge solely depends on the hydraulic conductivity, the aquifer thickness and is inversely related to the discharge rate. These assumptions are only valid under hydrostatic conditions in the aquifer system. In general the interface between fresh and saline water forms a zone of transition due to diffusion/dispersion or local anisotropy.


Methods

The first study about submarine groundwater discharge was done by Sonrel (1868), who speculated on the risk of submarine springs for sailors. However, until the mid-1990s, SGD remained rather unrecognized by the scientific community because it was hard to detect and measure the freshwater discharge. The first elaborated method to study SGD was done by Moore (1996), who used
radium-226 Radium (88Ra) has no stable or nearly stable isotopes, and thus a standard atomic weight cannot be given. The longest lived, and most common, isotope of radium is 226Ra with a half-life of . 226Ra occurs in the decay chain of 238U (often referr ...
as a tracer for groundwater. Since then several methods and instruments have been developed to attempt to detect and quantify discharge rates.


Radium-226

The first study which detected and quantified submarine groundwater discharge on a regional basis was done by Moore (1996) in the South Atlantic Bight off
South Carolina )'' Animis opibusque parati'' ( for, , Latin, Prepared in mind and resources, links=no) , anthem = " Carolina";" South Carolina On My Mind" , Former = Province of South Carolina , seat = Columbia , LargestCity = Charleston , LargestMetro = ...
. He measured enhanced radium-226 concentrations within the water column near shore and up to about from the shoreline. Radium-226 is a decay product of
thorium-230 Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, 232Th, is ''relatively'' stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the ge ...
, which is produced within sediments and supplied by rivers. However, these sources could not explain the high concentrations present in the study area. Moore (1996) hypothesized that submarine groundwater, enriched in radium-226, was responsible for the high concentrations. This hypothesis has been tested numerous times at sites around the world and confirmed at each site.


Seepage meter

Lee (1977) designed a seepage meter, which consists of a chamber which is connected to a sampling port and a plastic bag. The chamber is inserted into the sediment and water discharging through the sediments is caught within the plastic bag. The change in volume of water which is caught in the plastic bag over time represents the freshwater flux.


Pore water profiles

According to Schlüter et al. (2004) chloride pore water profiles can be used to investigate submarine groundwater discharge. Chloride can be used as a conservative tracer, as it is enriched in seawater and depleted in groundwater. Three different shapes of chloride pore water profiles reflect three different transport modes within marine sediments. A chloride profile showing constant concentrations with depth indicates that no submarine groundwater is present. A chloride profile with a linear decline indicates a diffusive mixing between groundwater and seawater and a concave shaped chloride profile represents an advective admixture of submarine groundwater from below. Stable isotope ratios in the water molecule may also be used to trace and quantify the sources of a submarine groundwater discharge.


See also

*
Wonky hole Wonky hole is a colloquial, Australian term for a submarine groundwater discharge, a freshwater spring flowing from the seabed. Geography Wonky holes are found in the Great Barrier Reef and the Gulf of Carpentaria, both in Queensland. Wonky ho ...
, freshwater submarine exit points for coral and sediment covered sediment filled old river channels


References

{{DEFAULTSORT:Submarine Groundwater Discharge Fresh water Physical oceanography Biogeochemistry