HOME

TheInfoList



OR:

In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrice ...
, a squeeze mapping, also called a squeeze transformation, is a type of
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that ...
that preserves Euclidean
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an op ...
of regions in the
Cartesian plane A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
, but is ''not'' a
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
or
shear mapping In plane geometry, a shear mapping is a linear map that displaces each point in a fixed direction, by an amount proportional to its signed distance from the line that is parallel to that direction and goes through the origin. This type of mappi ...
. For a fixed positive real number , the mapping :(x, y) \mapsto (ax, y/a) is the ''squeeze mapping'' with parameter . Since :\ is a
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, ca ...
, if and , then and the points of the image of the squeeze mapping are on the same hyperbola as is. For this reason it is natural to think of the squeeze mapping as a hyperbolic rotation, as did
Émile Borel Félix Édouard Justin Émile Borel (; 7 January 1871 – 3 February 1956) was a French mathematician and politician. As a mathematician, he was known for his founding work in the areas of measure theory and probability. Biography Borel was ...
in 1914, by analogy with ''circular rotations'', which preserve circles.


Logarithm and hyperbolic angle

The squeeze mapping sets the stage for development of the concept of logarithms. The problem of finding the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an op ...
bounded by a hyperbola (such as is one of quadrature. The solution, found by
Grégoire de Saint-Vincent Grégoire de Saint-Vincent - in latin : Gregorius a Sancto Vincentio, in dutch : Gregorius van St-Vincent - (8 September 1584 Bruges – 5 June 1667 Ghent) was a Flemish Jesuit and mathematician. He is remembered for his work on quadrature of th ...
and
Alphonse Antonio de Sarasa Alphonse Antonio de Sarasa was a Jesuit mathematician who contributed to the understanding of logarithms, particularly as areas under a hyperbola. Alphonse de Sarasa was born in 1618, in Nieuwpoort in Flanders. In 1632 he was admitted as a no ...
in 1647, required the
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
function, a new concept. Some insight into logarithms comes through
hyperbolic sector A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points and on the rectangular hyperbola , or the corresponding region when this hyperbola is re-scaled and ...
s that are permuted by squeeze mappings while preserving their area. The area of a hyperbolic sector is taken as a measure of a
hyperbolic angle In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of ''xy'' = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic function ...
associated with the sector. The hyperbolic angle concept is quite independent of the ordinary circular angle, but shares a property of invariance with it: whereas circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping. Both circular and hyperbolic angle generate
invariant measure In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping ...
s but with respect to different transformation groups. The
hyperbolic function In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the u ...
s, which take hyperbolic angle as argument, perform the role that circular functions play with the circular angle argument.


Group theory

In 1688, long before abstract
group theory In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen ...
, the squeeze mapping was described by Euclid Speidell in the terms of the day: "From a Square and an infinite company of Oblongs on a Superficies, each Equal to that square, how a curve is begotten which shall have the same properties or affections of any Hyperbola inscribed within a Right Angled Cone." If and are positive real numbers, the
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
of their squeeze mappings is the squeeze mapping of their product. Therefore, the collection of squeeze mappings forms a
one-parameter group In mathematics, a one-parameter group or one-parameter subgroup usually means a continuous group homomorphism :\varphi : \mathbb \rightarrow G from the real line \mathbb (as an additive group) to some other topological group G. If \varphi is ...
isomorphic to the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
of
positive real numbers In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those real numbers that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used f ...
. An additive view of this group arises from consideration of hyperbolic sectors and their hyperbolic angles. From the point of view of the
classical group In mathematics, the classical groups are defined as the special linear groups over the reals , the complex numbers and the quaternions together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or s ...
s, the group of squeeze mappings is , the
identity component In mathematics, specifically group theory, the identity component of a group ''G'' refers to several closely related notions of the largest connected subgroup of ''G'' containing the identity element. In point set topology, the identity compo ...
of the indefinite orthogonal group of 2×2 real matrices preserving the
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to ...
. This is equivalent to preserving the form via the
change of basis In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are consider ...
:x=u+v,\quad y=u-v\,, and corresponds geometrically to preserving hyperbolae. The perspective of the group of squeeze mappings as hyperbolic rotation is analogous to interpreting the group (the connected component of the definite
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. ...
) preserving quadratic form as being ''circular rotations''. Note that the "" notation corresponds to the fact that the reflections :u \mapsto -u,\quad v \mapsto -v are not allowed, though they preserve the form (in terms of and these are and ; the additional "" in the hyperbolic case (as compared with the circular case) is necessary to specify the identity component because the group has connected components, while the group has components: has components, while only has 1. The fact that the squeeze transforms preserve area and orientation corresponds to the inclusion of subgroups – in this case – of the subgroup of hyperbolic rotations in the
special linear group In mathematics, the special linear group of degree ''n'' over a field ''F'' is the set of matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the ge ...
of transforms preserving area and orientation (a
volume form In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold M of dimension n, a volume form is an n-form. It is an element of the space of sections of th ...
). In the language of
Möbius transformation In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form f(z) = \frac of one complex variable ''z''; here the coefficients ''a'', ''b'', ''c'', ''d'' are complex numbers satisfying ''ad' ...
s, the squeeze transformations are the hyperbolic elements in the classification of elements.


Applications

Here some applications are summarized with historic references.


Relativistic spacetime

Spacetime geometry is conventionally developed as follows: Select (0,0) for a "here and now" in a spacetime. Light radiant left and right through this central event tracks two lines in the spacetime, lines that can be used to give coordinates to events away from (0,0). Trajectories of lesser velocity track closer to the original timeline (0,''t''). Any such velocity can be viewed as a zero velocity under a squeeze mapping called a
Lorentz boost In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation ...
. This insight follows from a study of
split-complex number In algebra, a split complex number (or hyperbolic number, also perplex number, double number) has two real number components and , and is written z=x+yj, where j^2=1. The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number wi ...
multiplications and the diagonal basis which corresponds to the pair of light lines. Formally, a squeeze preserves the hyperbolic metric expressed in the form ''xy''; in a different coordinate system. This application in the
theory of relativity The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in ...
was noted in 1912 by Wilson and Lewis, by Werner Greub, and by
Louis Kauffman Louis Hirsch Kauffman (born February 3, 1945) is an American mathematician, topologist, and professor of mathematics in the Department of Mathematics, Statistics, and Computer science at the University of Illinois at Chicago. He is known for th ...
. Furthermore, the squeeze mapping form of Lorentz transformations was used by
Gustav Herglotz Gustav Herglotz (2 February 1881 – 22 March 1953) was a German Bohemian physicist best known for his works on the theory of relativity and seismology. Biography Gustav Ferdinand Joseph Wenzel Herglotz was born in Volary num. 28 to a public ...
(1909/10) while discussing
Born rigidity Born rigidity is a concept in special relativity. It is one answer to the question of what, in special relativity, corresponds to the rigid body of non-relativistic classical mechanics. The concept was introduced by Max Born (1909),Born (1909b) ...
, and was popularized by Wolfgang Rindler in his textbook on relativity, who used it in his demonstration of their characteristic property. The term ''squeeze transformation'' was used in this context in an article connecting the
Lorentz group In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicis ...
with
Jones calculus In optics, polarized light can be described using the Jones calculus, discovered by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by ''Jones matrices''. When light crosses an o ...
in optics.


Corner flow

In
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) a ...
one of the fundamental motions of an
incompressible flow In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An ...
involves
bifurcation Bifurcation or bifurcated may refer to: Science and technology * Bifurcation theory, the study of sudden changes in dynamical systems ** Bifurcation, of an incompressible flow, modeled by squeeze mapping the fluid flow * River bifurcation, the ...
of a flow running up against an immovable wall. Representing the wall by the axis ''y'' = 0 and taking the parameter ''r'' = exp(''t'') where ''t'' is time, then the squeeze mapping with parameter ''r'' applied to an initial fluid state produces a flow with bifurcation left and right of the axis ''x'' = 0. The same
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
gives fluid convergence when time is run backward. Indeed, the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an op ...
of any
hyperbolic sector A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points and on the rectangular hyperbola , or the corresponding region when this hyperbola is re-scaled and ...
is invariant under squeezing. For another approach to a flow with hyperbolic streamlines, see . In 1989 Ottino described the "linear isochoric two-dimensional flow" as :v_1 = G x_2 \quad v_2 = K G x_1 where K lies in the interval minus;1, 1 The streamlines follow the curves :x_2^2 - K x_1^2 = \mathrm so negative ''K'' corresponds to an
ellipse In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
and positive ''K'' to a hyperbola, with the rectangular case of the squeeze mapping corresponding to ''K'' = 1. Stocker and Hosoi described their approach to corner flow as follows: :we suggest an alternative formulation to account for the corner-like geometry, based on the use of hyperbolic coordinates, which allows substantial analytical progress towards determination of the flow in a Plateau border and attached liquid threads. We consider a region of flow forming an angle of ''π''/2 and delimited on the left and bottom by symmetry planes. Stocker and Hosoi then recall Moffatt's consideration of "flow in a corner between rigid boundaries, induced by an arbitrary disturbance at a large distance." According to Stocker and Hosoi, :For a free fluid in a square corner, Moffatt's (antisymmetric) stream function ... ndicatesthat hyperbolic coordinates are indeed the natural choice to describe these flows.


Bridge to transcendentals

The area-preserving property of squeeze mapping has an application in setting the foundation of the transcendental functions
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
and its inverse the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
: Definition: Sector(''a,b'') is the
hyperbolic sector A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points and on the rectangular hyperbola , or the corresponding region when this hyperbola is re-scaled and ...
obtained with central rays to (''a'', 1/''a'') and (''b'', 1/''b''). Lemma: If ''bc'' = ''ad'', then there is a squeeze mapping that moves the sector(''a,b'') to sector(''c,d''). Proof: Take parameter ''r'' = ''c''/''a'' so that (''u,v'') = (''rx'', ''y''/''r'') takes (''a'', 1/''a'') to (''c'', 1/''c'') and (''b'', 1/''b'') to (''d'', 1/''d''). Theorem ( Gregoire de Saint-Vincent 1647) If ''bc'' = ''ad'', then the quadrature of the hyperbola ''xy'' = 1 against the asymptote has equal areas between ''a'' and ''b'' compared to between ''c'' and ''d''. Proof: An argument adding and subtracting triangles of area , one triangle being , shows the hyperbolic sector area is equal to the area along the asymptote. The theorem then follows from the lemma. Theorem (
Alphonse Antonio de Sarasa Alphonse Antonio de Sarasa was a Jesuit mathematician who contributed to the understanding of logarithms, particularly as areas under a hyperbola. Alphonse de Sarasa was born in 1618, in Nieuwpoort in Flanders. In 1632 he was admitted as a no ...
1649) As area measured against the asymptote increases in arithmetic progression, the projections upon the asymptote increase in geometric sequence. Thus the areas form ''logarithms'' of the asymptote index. For instance, for a standard position angle which runs from (1, 1) to (''x'', 1/''x''), one may ask "When is the hyperbolic angle equal to one?" The answer is the
transcendental number In mathematics, a transcendental number is a number that is not algebraic—that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are and . Though only a few classes ...
x = e. A squeeze with ''r'' = e moves the unit angle to one between (''e'', 1/''e'') and (''ee'', 1/''ee'') which subtends a sector also of area one. The
geometric progression In mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the ''common ratio''. For ex ...
: ''e'', ''e''2, ''e''3, ..., ''e''''n'', ... corresponds to the asymptotic index achieved with each sum of areas : 1,2,3, ..., ''n'',... which is a proto-typical
arithmetic progression An arithmetic progression or arithmetic sequence () is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common differ ...
''A'' + ''nd'' where ''A'' = 0 and ''d'' = 1 .


Lie transform

Following Pierre Ossian Bonnet's (1867) investigations on surfaces of constant curvatures,
Sophus Lie Marius Sophus Lie ( ; ; 17 December 1842 – 18 February 1899) was a Norwegian mathematician. He largely created the theory of continuous symmetry and applied it to the study of geometry and differential equations. Life and career Marius S ...
(1879) found a way to derive new
pseudospherical surface In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having curvature in each point. Its name comes from the analogy with the sphere of radius , which is a surface ...
s from a known one. Such surfaces satisfy the
Sine-Gordon equation The sine-Gordon equation is a nonlinear hyperbolic partial differential equation in 1 + 1 dimensions involving the d'Alembert operator and the sine of the unknown function. It was originally introduced by in the course of study of surf ...
: :\frac=K\sin\Theta , where (s,\sigma) are asymptotic coordinates of two principal tangent curves and \Theta their respective angle. Lie showed that if \Theta=f(s,\sigma) is a solution to the Sine-Gordon equation, then the following squeeze mapping (now known as Lie transform) indicates other solutions of that equation: :\Theta=f\left(ms,\ \frac\right) . Lie (1883) noticed its relation to two other transformations of pseudospherical surfaces: The Bäcklund transform (introduced by Albert Victor Bäcklund in 1883) can be seen as the combination of a Lie transform with a Bianchi transform (introduced by
Luigi Bianchi Luigi Bianchi (18 January 1856 – 6 June 1928) was an Italian mathematician. He was born in Parma, Emilia-Romagna, and died in Pisa. He was a leading member of the vigorous geometric school which flourished in Italy during the later years of ...
in 1879.) Such transformations of pseudospherical surfaces were discussed in detail in the lectures on
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and mult ...
by Gaston Darboux (1894),
Luigi Bianchi Luigi Bianchi (18 January 1856 – 6 June 1928) was an Italian mathematician. He was born in Parma, Emilia-Romagna, and died in Pisa. He was a leading member of the vigorous geometric school which flourished in Italy during the later years of ...
(1894), or Luther Pfahler Eisenhart (1909). It is known that the Lie transforms (or squeeze mappings) correspond to Lorentz boosts in terms of light-cone coordinates, as pointed out by Terng and Uhlenbeck (2000): :''Sophus Lie observed that the SGE inus-Gordon equationis invariant under Lorentz transformations. In asymptotic coordinates, which correspond to light cone coordinates, a Lorentz transformation is (x,t)\mapsto\left(\tfracx,\lambda t\right).'' This can be represented as follows: :\begin-c^t^+x^=-c^t^+x^\\ \hline \beginct' & =ct\gamma-x\beta\gamma & & =ct\cosh\eta-x\sinh\eta\\ x' & =-ct\beta\gamma+x\gamma & & =-ct\sinh\eta+x\cosh\eta \end \\ \hline u=ct+x,\ v=ct-x,\ k=\sqrt=e^\\ u'=\frac,\ v'=kv\\ \hline u'v'=uv \end where ''k'' corresponds to the Doppler factor in Bondi ''k''-calculus, ''η'' is the
rapidity In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with d ...
.


See also

* Indefinite orthogonal group *
Isochoric process In thermodynamics, an isochoric process, also called a constant-volume process, an isovolumetric process, or an isometric process, is a thermodynamic process during which the volume of the closed system undergoing such a process remains constant. ...


References

* HSM Coxeter & SL Greitzer (1967) ''Geometry Revisited'', Chapter 4 Transformations, A genealogy of transformation. * P. S. Modenov and A. S. Parkhomenko (1965) ''Geometric Transformations'', volume one. See pages 104 to 106. *{{Cite book, author=Walter, Scott, year=1999, contribution=The non-Euclidean style of Minkowskian relativity, editor=J. Gray, title=The Symbolic Universe: Geometry and Physics, pages=91–127, publisher=Oxford University Press, contribution-url=http://www.univ-nancy2.fr/DepPhilo/walter/papers/nes.pdf(see page 9 of e-link) Affine geometry Functions and mappings Linear algebra Articles containing proofs