HOME

TheInfoList



OR:

The solenoid structure of
chromatin Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in ...
is a model for the structure of the 30 nm fibre. It is a secondary chromatin structure which helps to package eukaryotic DNA into the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
.


Background

Chromatin was first discovered by
Walther Flemming Walther Flemming (21 April 1843 – 4 August 1905) was a German biologist and a founder of cytogenetics. He was born in Sachsenberg (now part of Schwerin) as the fifth child and only son of the psychiatrist Carl Friedrich Flemming (1799–1880 ...
by using aniline dyes to stain it. In 1974, it was first proposed by
Roger Kornberg Roger David Kornberg (born April 24, 1947) is an American biochemist and professor of structural biology at Stanford University School of Medicine. Kornberg was awarded the Nobel Prize in Chemistry in 2006 for his studies of the process by which ...
that chromatin was based on a repeating unit of a
histone octamer A histone octamer is the eight-protein complex found at the center of a nucleosome core particle. It consists of two copies of each of the four core histone proteins ( H2A, H2B, H3, and H4). The octamer assembles when a tetramer, containing two ...
and around 200
base pairs A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
of DNA. The solenoid model was first proposed by John Finch and
Aaron Klug Sir Aaron Klug (11 August 1926 – 20 November 2018) was a British biophysicist and chemist. He was a winner of the 1982 Nobel Prize in Chemistry for his development of crystallographic electron microscopy and his structural elucidation of bi ...
in 1976. They used
electron microscopy An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
images and X-ray diffraction patterns to determine their model of the structure. This was the first model to be proposed for the structure of the 30 nm fibre.


Structure

DNA in the nucleus is wrapped around
nucleosomes A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundamen ...
, which are histone octamers formed of core histone proteins; two histone H2A- H2B dimers, two
histone H3 Histone H3 is one of the five main histones involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H3 is involved with the structure of the nucleosomes of the 'beads on a strin ...
proteins, and two histone H4 proteins. The primary chromatin structure, the least-packed form, is the 11 nm, or “beads on a string” form, where DNA is wrapped around nucleosomes at relatively regular intervals, as Roger Kornberg proposed. Histone H1 protein binds to the site where DNA enters and exits the nucleosome, wrapping 147 base pairs around the histone core and stabilising the nucleosome, this structure is a chromatosome. In the solenoid structure, the nucleosomes fold up and are stacked, forming a helix. They are connected by bent linker DNA which positions sequential nucleosomes adjacent to one another in the helix. The nucleosomes are positioned with the histone H1 proteins facing toward the centre where they form a polymer. Finch and Klug determined that the helical structure had only one-start point because they mostly observed small pitch angles of 11 nm, which is about the same diameter as a nucleosome. There are approximately 6 nucleosomes in each turn of the helix. Finch and Klug actually observed a wide range of nucleosomes per turn but they put this down to flattening. Finch and Klug's electron microscopy images had a lack of visible detail so they were unable to determine helical parameters other than the pitch. More recent electron microscopy images have been able to define the dimensions of solenoid structures and identified it as a left-handed helix. The structure of solenoids are insensitive to changes in the length of the linker DNA.


Function

The solenoid structure's most obvious function is to help package the DNA so that it is small enough to fit into the nucleus. This is a big task as the nucleus of a
mammalian Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur o ...
cell has a diameter of approximately 6
µm The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer ( American spelling), also commonly known as a micron, is a unit of length in the International System of Uni ...
, whilst the DNA in one human cell would stretch to just over 2 metres long if it were unwound. The "beads on a string" structure can compact DNA to 7 times smaller. The solenoid structure can increase this to be 40 times smaller. When DNA is compacted into the solenoid structure can still be transcriptionally active in certain areas. It is the secondary chromatin structure that is important for this transcriptional repression as '' in vivo'' active genes are assembled in large tertiary chromatin structures.


Formation

There are many factors that affect whether the solenoid structure will form or not. Some factors alter the structure of the 30 nm fibre, and some prevent it from forming in that region altogether. The concentration of ions, particularly
divalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, or affinity of an ...
cations An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
affects the structure of the 30 nm fibre, which is why Finch and Klug were not able to form solenoid structures in the presence of
chelating agents Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands a ...
. There is an acidic patch on the surface of histone H2A and histone H2B proteins which interacts with the tails of histone H4 proteins in adjacent nucleosomes. These interactions are important for solenoid formation. Histone variants can affect solenoid formation, for example H2A.Z is a histone variant of H2A, and it has a more acidic patch than the one on H2A, so H2A.Z would have a stronger interaction with histone H4 tails and probably contribute to solenoid formation. The histone H4 tail is essential for formation of 30 nm fibres. However, acetylation of core histone tails affects the folding of chromatin by destabilising interactions between the DNA and the nucleosomes, making histone modulation a key factor in solenoid structure. Acetylation of H4K16 (the
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −CO ...
which is the 16th
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
from the N-terminal of histone H4) inhibits 30 nm fibre formation. To decompact the 30 nm fibre, for instance to transcriptionally activate it, both H4K16 acetylation and removal of the histone H1 proteins are required.


Further packaging

Chromatin can form a tertiary chromatin structure and be compacted even further than the solenoid structure by forming supercoils which have a diameter of around 700 nm. This supercoil is formed by regions of DNA called scaffold/matrix attachment regions (SMARs) attaching to a central scaffolding matrix in the nucleus creating loops of solenoid chromatin between 4.5 and 112 kilobase pairs long. The central scaffolding matrix itself forms a spiral shape for an additional layer of compaction.


Alternative models

Several other models have been proposed and there is still a lot of uncertainty about the structure of the 30 nm fibre. Even the more recent research produces conflicting information. There is data from electron microscopy measurements of the 30 nm fibre dimensions that has physical constraints which mean it can only be modelled with a one-start helical structure like the solenoid structure. It also shows there is no linear relationship between the length of the linker DNA and the dimensions (instead there are two distinct classes). There is also data from experiments which cross-linked nucleosomes that shows a two-start structure. There is evidence that suggests both the solenoid and zig-zag (two-start) structures are present in 30 nm fibres. It is possible that chromatin structure may not be as ordered as previously thought, or that the 30 nm fibre may not even be present ''
in situ ''In situ'' (; often not italicized in English) is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in ...
''.


Two-start twisted-ribbon model

The two-start twisted-ribbon model was proposed in 1981 by Worcel, Strogatz and Riley. This structure involves alternating nucleosomes stacking to form two parallel helices, with the linker DNA zig-zagging up and down the helical axis.


Two-start cross-linker model

The two-start cross-linker model was proposed in 1986 by Williams et al.. This structure, like the two-start twisted-ribbon model, involves alternating nucleosomes stacking to form two parallel helices, but the nucleosomes are on opposite sides of the helices with the linker DNA crossing across the centre of the helical axis.


Superbead model

The superbead model was proposed by Renz in 1977. This structure is not helical like the other models, it instead consists of discrete globular structures along the chromatin which vary in size.


Some alternative forms of DNA packaging

The chromatin in mammalian
sperm Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction (forms in which there is a larger, female reproductive cell and a smaller, male one). Animals produce motile sperm with a tail known as a flagellum, wh ...
is the most condensed form of eukaryotic DNA, it is packaged by protamines rather than nucleosomes, whilst prokaryotes package their DNA through supercoiling.


References

{{Reflist


External links


Aaron Klug tells his life story at the Web of Stories: The Solenoid Model
Molecular genetics DNA