sexagesimal
   HOME

TheInfoList



OR:

Sexagesimal, also known as base 60 or sexagenary, is a
numeral system A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symb ...
with sixty as its base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient
Babylonia Babylonia (; Akkadian: , ''māt Akkadī'') was an ancient Akkadian-speaking state and cultural area based in the city of Babylon in central-southern Mesopotamia (present-day Iraq and parts of Syria). It emerged as an Amorite-ruled state ...
ns, and is still used—in a modified form—for measuring
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, t ...
,
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s, and
geographic coordinates The geographic coordinate system (GCS) is a spherical or ellipsoidal coordinate system for measuring and communicating positions directly on the Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various ...
. The number 60, a superior highly composite number, has twelve factors, namely 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60, of which 2, 3, and 5 are
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s. With so many factors, many
fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
s involving sexagesimal numbers are simplified. For example, one hour can be divided evenly into sections of 30 minutes, 20 minutes, 15 minutes, 12 minutes, 10 minutes, 6 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes, and 1 minute. 60 is the smallest number that is divisible by every number from 1 to 6; that is, it is the lowest common multiple of 1, 2, 3, 4, 5, and 6. ''In this article, all sexagesimal digits are represented as decimal numbers, except where otherwise noted. For example the largest sexagesimal digit is "59".''


Origin

Using the thumb, and pointing to each of the three finger bones on each finger in turn, it is possible for people to count on their fingers to 12 on a single hand. A traditional counting system still in use in many regions of Asia works in this way, and could help to explain the occurrence of numeral systems based on 12 and 60 besides those based on 10, 20 and 5. In this system, a person's other hand would count the number of times that 12 was reached on their first hand. The five fingers would count five sets of 12, or sixty.. Translated from the French by David Bellos, E.F. Harding, Sophie Wood and Ian Monk. However, the Babylonian sexagesimal system was based on six groups of ten, not five groups of 12. According to Otto Neugebauer, the origins of sexagesimal are not as simple, consistent, or singular in time as they are often portrayed. Throughout their many centuries of use, which continues today for specialized topics such as time, angles, and astronomical coordinate systems, sexagesimal notations have always contained a strong undercurrent of decimal notation, such as in how sexagesimal digits are written. Their use has also always included (and continues to include) inconsistencies in where and how various bases are to represent numbers even within a single text. The most powerful driver for rigorous, fully self-consistent use of sexagesimal has always been its mathematical advantages for writing and calculating fractions. In ancient texts this shows up in the fact that sexagesimal is used most uniformly and consistently in mathematical tables of data. Another practical factor that helped expand the use of sexagesimal in the past even if less consistently than in mathematical tables, was its decided advantages to merchants and buyers for making everyday financial transactions easier when they involved bargaining for and dividing up larger quantities of goods. The early ''
shekel Shekel or sheqel ( akk, 𒅆𒅗𒇻 ''šiqlu'' or ''siqlu,'' he, שקל, plural he, שקלים or shekels, Phoenician: ) is an ancient Mesopotamian coin, usually of silver. A shekel was first a unit of weight—very roughly —and became c ...
'' in particular was one-sixtieth of a ''mana,'' though the Greeks later coerced this relationship into the more base-10 compatible ratio of a shekel being one-fiftieth of a '' mina''. Apart from mathematical tables, the inconsistencies in how numbers were represented within most texts extended all the way down to the most basic
cuneiform Cuneiform is a logo- syllabic script that was used to write several languages of the Ancient Middle East. The script was in active use from the early Bronze Age until the beginning of the Common Era. It is named for the characteristic wedg ...
symbols used to represent numeric quantities. For example, the cuneiform symbol for 1 was an ellipse made by applying the rounded end of the stylus at an angle to the clay, while the sexagesimal symbol for 60 was a larger oval or "big 1". But within the same texts in which these symbols were used, the number 10 was represented as a circle made by applying the round end of the style perpendicular to the clay, and a larger circle or "big 10" was used to represent 100. Such multi-base numeric quantity symbols could be mixed with each other and with abbreviations, even within a single number. The details and even the magnitudes implied (since zero was not used consistently) were idiomatic to the particular time periods, cultures, and quantities or concepts being represented. While such context-dependent representations of numeric quantities are easy to critique in retrospect, in modern times we still have dozens of regularly used examples of topic-dependent base mixing, including the recent innovation of adding decimal fractions to sexagesimal astronomical coordinates.


Usage


Babylonian mathematics

The sexagesimal system as used in ancient
Mesopotamia Mesopotamia ''Mesopotamíā''; ar, بِلَاد ٱلرَّافِدَيْن or ; syc, ܐܪܡ ܢܗܪ̈ܝܢ, or , ) is a historical region of Western Asia situated within the Tigris–Euphrates river system, in the northern part of the F ...
was not a pure base-60 system, in the sense that it did not use 60 distinct symbols for its digits. Instead, the
cuneiform Cuneiform is a logo- syllabic script that was used to write several languages of the Ancient Middle East. The script was in active use from the early Bronze Age until the beginning of the Common Era. It is named for the characteristic wedg ...
digits used
ten Ten, TEN or 10 may refer to: * 10, an even natural number following 9 and preceding 11 * one of the years 10 BC, AD 10, 1910 and 2010 * October, the tenth month of the year Places * Mount Ten, in Vietnam * Tongren Fenghuang Airport (IATA code ...
as a sub-base in the fashion of a sign-value notation: a sexagesimal digit was composed of a group of narrow, wedge-shaped marks representing units up to nine (, , , , ..., ) and a group of wide, wedge-shaped marks representing up to five tens (, , , , ). The value of the digit was the sum of the values of its component parts: Numbers larger than 59 were indicated by multiple symbol blocks of this form in place value notation. Because there was no symbol for
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usu ...
it is not always immediately obvious how a number should be interpreted, and its true value must sometimes have been determined by its context. For example, the symbols for 1 and 60 are identical. Later Babylonian texts used a placeholder () to represent zero, but only in the medial positions, and not on the right-hand side of the number, as in numbers like .


Other historical usages

In the Chinese calendar, a system is commonly used, in which days or years are named by positions in a sequence of ten stems and in another sequence of 12 branches. The same stem and branch repeat every 60 steps through this cycle. Book VIII of
Plato Plato ( ; grc-gre, Πλάτων ; 428/427 or 424/423 – 348/347 BC) was a Greek philosopher born in Athens during the Classical period in Ancient Greece. He founded the Platonist school of thought and the Academy, the first institutio ...
's '' Republic'' involves an allegory of marriage centered on the number 604 = and its divisors. This number has the particularly simple sexagesimal representation 1,0,0,0,0. Later scholars have invoked both Babylonian mathematics and music theory in an attempt to explain this passage.
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of import ...
's ''
Almagest The ''Almagest'' is a 2nd-century Greek-language mathematical and astronomical treatise on the apparent motions of the stars and planetary paths, written by Claudius Ptolemy ( ). One of the most influential scientific texts in history, it cano ...
'', a treatise on mathematical astronomy written in the second century AD, uses base 60 to express the fractional parts of numbers. In particular, his table of chords, which was essentially the only extensive trigonometric table for more than a millennium, has fractional parts of a degree in base 60, and was practically equivalent to a modern-day table of values of the sine function. Medieval astronomers also used sexagesimal numbers to note time. Al-Biruni first subdivided the hour sexagesimally into
minute The minute is a unit of time usually equal to (the first sexagesimal fraction) of an hour, or 60 seconds. In the UTC time standard, a minute on rare occasions has 61 seconds, a consequence of leap seconds (there is a provision to insert a n ...
s, seconds, thirds and fourths in 1000 while discussing Jewish months. Around 1235 John of Sacrobosco continued this tradition, although Nothaft thought Sacrobosco was the first to do so. The Parisian version of the Alfonsine tables (ca. 1320) used the day as the basic unit of time, recording multiples and fractions of a day in base-60 notation. The sexagesimal number system continued to be frequently used by European astronomers for performing calculations as late as 1671. For instance, Jost Bürgi in ''
Fundamentum Astronomiae ''Fundamentum Astronomiae'' is a historic manuscript presented by Jost Bürgi to Emperor Rudolf II in 1592. It describes Bürgi's trigonometry based algorithms called Kunstweg which can be used to calculate sines at arbitrary precision.Staudacher, ...
'' (presented to
Emperor Rudolf II Rudolf II (18 July 1552 – 20 January 1612) was Holy Roman Emperor (1576–1612), King of Hungary and Croatia (as Rudolf I, 1572–1608), King of Bohemia (1575–1608/1611) and Archduke of Austria (1576–1608). He was a member of the ...
in 1592), his colleague Ursus in ''Fundamentum Astronomicum'', and possibly also Henry Briggs, used multiplication tables based on the sexagesimal system in the late 16th century, to calculate sines. In the late 18th and early 19th centuries, Tamil astronomers were found to make astronomical calculations, reckoning with shells using a mixture of decimal and sexagesimal notations developed by
Hellenistic In Classical antiquity, the Hellenistic period covers the time in Mediterranean history after Classical Greece, between the death of Alexander the Great in 323 BC and the emergence of the Roman Empire, as signified by the Battle of Actium i ...
astronomers. Base-60 number systems have also been used in some other cultures that are unrelated to the Sumerians, for example by the Ekari people of
Western New Guinea Western New Guinea, also known as Papua, Indonesian New Guinea, or Indonesian Papua, is the western half of the Melanesian island of New Guinea which is administered by Indonesia. Since the island is alternatively named as Papua, the region ...
.


Modern usage

Modern uses for the sexagesimal system include measuring
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s,
geographic coordinates The geographic coordinate system (GCS) is a spherical or ellipsoidal coordinate system for measuring and communicating positions directly on the Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various ...
, electronic navigation, and
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, t ...
. One
hour An hour (symbol: h; also abbreviated hr) is a unit of time conventionally reckoned as of a day and scientifically reckoned between 3,599 and 3,601 seconds, depending on the speed of Earth's rotation. There are 60 minutes in an hour, and 24 ho ...
of time is divided into 60
minute The minute is a unit of time usually equal to (the first sexagesimal fraction) of an hour, or 60 seconds. In the UTC time standard, a minute on rare occasions has 61 seconds, a consequence of leap seconds (there is a provision to insert a n ...
s, and one minute is divided into 60 seconds. Thus, a measurement of time such as 3:23:17 can be interpreted as a whole sexagesimal number (no sexagesimal point), meaning . However, each of the three sexagesimal digits in this number (3, 23, and 17) is written using the decimal system. Similarly, the practical unit of angular measure is the
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathemati ...
, of which there are 360 (six sixties) in a circle. There are 60
minutes of arc A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The na ...
in a degree, and 60
arcseconds A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The na ...
in a minute.


YAML

In version 1.1 of the YAML data storage format, sexagesimals are supported for plain scalars, and formally specified both for integers and floating point numbers. This has led to confusion, as e.g. some
MAC address A media access control address (MAC address) is a unique identifier assigned to a network interface controller (NIC) for use as a network address in communications within a network segment. This use is common in most IEEE 802 networking tec ...
es would be recognised as sexagesimals and loaded as integers, where others were not and loaded as strings. In YAML 1.2 support for sexagesimals was dropped.


Notations

In
Hellenistic Greek Koine Greek (; Koine el, ἡ κοινὴ διάλεκτος, hē koinè diálektos, the common dialect; ), also known as Hellenistic Greek, common Attic, the Alexandrian dialect, Biblical Greek or New Testament Greek, was the common supra-reg ...
astronomical texts, such as the writings of
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of import ...
, sexagesimal numbers were written using Greek alphabetic numerals, with each sexagesimal digit being treated as a distinct number. Hellenistic astronomers adopted a new symbol for zero, , which morphed over the centuries into other forms, including the Greek letter omicron, ο, normally meaning 70, but permissible in a sexagesimal system where the maximum value in any position is 59. The Greeks limited their use of sexagesimal numbers to the fractional part of a number. In medieval Latin texts, sexagesimal numbers were written using
Arabic numerals Arabic numerals are the ten numerical digits: , , , , , , , , and . They are the most commonly used symbols to write decimal numbers. They are also used for writing numbers in other systems such as octal, and for writing identifiers such as ...
; the different levels of fractions were denoted ''minuta'' (i.e., fraction), ''minuta secunda'', ''minuta tertia'', etc. By the 17th century it became common to denote the integer part of sexagesimal numbers by a superscripted zero, and the various fractional parts by one or more accent marks. John Wallis, in his ''Mathesis universalis'', generalized this notation to include higher multiples of 60; giving as an example the number ; where the numbers to the left are multiplied by higher powers of 60, the numbers to the right are divided by powers of 60, and the number marked with the superscripted zero is multiplied by 1. This notation leads to the modern signs for degrees, minutes, and seconds. The same minute and second nomenclature is also used for units of time, and the modern notation for time with hours, minutes, and seconds written in decimal and separated from each other by colons may be interpreted as a form of sexagesimal notation. In some usage systems, each position past the sexagesimal point was numbered, using Latin or French roots: ''
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
'' or ''primus'', ''seconde'' or ''secundus'', ''tierce'', ''quatre'', ''quinte'', etc. To this day we call the second-order part of an hour or of a degree a "second". Until at least the 18th century, of a second was called a "tierce" or "third". In the 1930s, Otto Neugebauer introduced a modern notational system for Babylonian and Hellenistic numbers that substitutes modern decimal notation from 0 to 59 in each position, while using a semicolon (;) to separate the integer and fractional portions of the number and using a comma (,) to separate the positions within each portion. For example, the mean synodic month used by both Babylonian and Hellenistic astronomers and still used in the
Hebrew calendar The Hebrew calendar ( he, הַלּוּחַ הָעִבְרִי, translit=HaLuah HaIvri), also called the Jewish calendar, is a lunisolar calendar used today for Jewish religious observance, and as an official calendar of the state of Israel. I ...
is 29;31,50,8,20 days. This notation is used in this article.


Fractions and irrational numbers


Fractions

In the sexagesimal system, any
fraction A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
in which the denominator is a regular number (having only 2, 3, and 5 in its prime factorization) may be expressed exactly. Shown here are all fractions of this type in which the denominator is less than or equal to 60: : = 0;30 : = 0;20 : = 0;15 : = 0;12 : = 0;10 : = 0;7,30 : = 0;6,40 : = 0;6 : = 0;5 : = 0;4 : = 0;3,45 : = 0;3,20 : = 0;3 : = 0;2,30 : = 0;2,24 : = 0;2,13,20 : = 0;2 : = 0;1,52,30 : = 0;1,40 : = 0;1,30 : = 0;1,20 : = 0;1,15 : = 0;1,12 : = 0;1,6,40 : = 0;1 However numbers that are not regular form more complicated repeating fractions. For example: : = 0; (the bar indicates the sequence of sexagesimal digits 8,34,17 repeats infinitely many times) : = 0; : = 0; : = 0;4, : = 0; : = 0; : = 0; : = 0; The fact that the two numbers that are adjacent to sixty, 59 and 61, are both prime numbers implies that fractions that repeat with a period of one or two sexagesimal digits can only have regular number multiples of 59 or 61 as their denominators, and that other non-regular numbers have fractions that repeat with a longer period.


Irrational numbers

The representations of
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s in any positional number system (including decimal and sexagesimal) neither terminate nor
repeat Repeat may refer to: * Rerun, a rebroadcast of an episode of a radio or television program * Repeated sequence (DNA), a pattern of nucleic acid (DNA or RNA) that occurs in multiple copies throughout the genome ** CRISPR * The smallest rectangle ...
. The
square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princi ...
, the length of the diagonal of a
unit square In mathematics, a unit square is a square whose sides have length . Often, ''the'' unit square refers specifically to the square in the Cartesian plane with corners at the four points ), , , and . Cartesian coordinates In a Cartesian coordina ...
, was approximated by the Babylonians of the Old Babylonian Period () as :1;24,51,10=1+\frac+\frac+\frac=\frac\approx 1.41421296\ldots Because  ≈ ... is an
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
, it cannot be expressed exactly in sexagesimal (or indeed any integer-base system), but its sexagesimal expansion does begin 1;24,51,10,7,46,6,4,44... () The value of as used by the
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
mathematician and scientist
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of import ...
was 3;8,30 = = ≈ .... Jamshīd al-Kāshī, a 15th-century
Persia Iran, officially the Islamic Republic of Iran, and also called Persia, is a country located in Western Asia. It is bordered by Iraq and Turkey to the west, by Azerbaijan and Armenia to the northwest, by the Caspian Sea and Turkme ...
n mathematician, calculated 2 as a sexagesimal expression to its correct value when rounded to nine subdigits (thus to ); his value for 2 was 6;16,59,28,1,34,51,46,14,50., p. 125 Like above, 2 is an irrational number and cannot be expressed exactly in sexagesimal. Its sexagesimal expansion begins 6;16,59,28,1,34,51,46,14,49,55,12,35... ()


See also

*
Clock A clock or a timepiece is a device used to measure and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units such as the day, the lunar month and t ...
*
Latitude In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north po ...
* Trigonometry


References


Further reading

*. *{{citation , first1 = Hans J. , last1 = Nissen , first2 = P. , last2 = Damerow , first3 = R. , last3 = Englund , title = Archaic Bookkeeping , publisher = University of Chicago Press , year = 1993 , isbn = 0-226-58659-6


External links


"Facts on the Calculation of Degrees and Minutes"
is an Arabic language book by Sibṭ al-Māridīnī, Badr al-Dīn Muḥammad ibn Muḥammad (b. 1423). This work offers a very detailed treatment of sexagesimal mathematics and includes what appears to be the first mention of the periodicity of sexagesimal fractions. Positional numeral systems Babylonian mathematics