HOME

TheInfoList



OR:

A seed orchard is an intensively-managed
plantation A plantation is an agricultural estate, generally centered on a plantation house, meant for farming that specializes in cash crops, usually mainly planted with a single crop, with perhaps ancillary areas for vegetables for eating and so on. Th ...
of specifically arranged trees for the mass production of genetically improved seeds to create plants, or seeds for the establishment of new forests.


General

Seed orchards are a common method of mass-multiplication for transferring genetically improved material from breeding populations to production populations (forests) and in this sense are often referred to as "multiplication" populations. A seed orchard is often composed of grafts (vegetative copies) of selected
genotype The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a ...
s, but seedling seed orchards also occur mainly to combine orchard with progeny testing. Seed orchards are the strong link between breeding programs and plantation establishment. They are designed and managed to produce seeds of superior genetic quality compared to those obtained from seed production areas, seed stands, or unimproved stands.


Material and connection with breeding population

In first generation seed orchards, the parents usually are phenotypically-selected trees. In advanced generation seed orchards, the seed orchards are harvesting the benefits generated by
tree breeding Tree breeding is the application of genetic, reproductive biology and economics principles to the genetic improvement and management of forest trees. In contrast to the selective breeding of livestock, arable crops, and horticultural flowers over t ...
and the parents may be selected among the tested clones or families. It is efficient to synchronise the productive live cycle of the seed orchards with the cycle time of the breeding population. In the seed orchard, the trees can be arranged in a design to keep the related individuals or cloned copies apart from each other. Seed orchards are the delivery vehicle for genetic improvement programs where the trade-off between genetic gain and diversity is the most important concern. The genetic gain of seed orchard crops depends primarily on the genetic superiority of the orchard parents, the gametic contribution to the resultant seed crops, and pollen contamination from outside seed orchards.


Genetic diversity of seed orchard crops

Seed production and gene diversity Genetic diversity is often a major consideration in e g forest crops. Group coancestry of a population Consider the gene pool of a seed orchard crop or other source of seeds with parents. The gene pool is large as there are many seeds in a seed ...
is an important aspect when using improved materials like seed orchard crops. Seed orchards crops derive generally from a limited number of trees. But if it is a common
wind-pollinated Anemophily or wind pollination is a form of pollination whereby pollen is distributed by wind. Almost all gymnosperms are anemophilous, as are many plants in the order Poales, including grasses, sedges, and rushes. Other common anemophilo ...
species much pollen will come from outside the seed orchard and widen the
genetic diversity Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is dis ...
. The genetic gain of the first generation seed orchards is not great and the seed orchard progenies overlap with unimproved material. Gene diversity of the seed crops is greatly influenced by the relatedness (kinship) among orchard parents, the parental fertility variation, and the pollen contamination.


Management and practical examples

Seed orchards are usually managed to obtain sustainable and large crops of seeds of good quality. To achieve this, the following methods are commonly applied: orchards are established on flat surface sites with southern exposure (better conditions for orchard maintenance and for seed production), no stands of the same species in close proximity (avoid strong pollen contamination), sufficient area to produce and be mainly pollinated with their own pollen cloud, cleaning the corridors between the rows, fertilising, and supplemental pollination. The genetic quality of seed orchards can be improved by genetic thinning and selective harvesting.Prescher F., Lindgren D. and Karlsson B. 2008
Genetic thinning of clonal seed orchards using linear deployment may improve both gain and diversity.
''Forest Ecology and Management'' 254: 188–192.
In plantation forestry with
southern yellow pine In ecology and forestry, yellow pine refers to a number of conifer species that tend to grow in similar plant communities and yield similar strong wood. In the Western United States, yellow pine refers to Jeffrey pine or ponderosa pine. In the ...
s in the United States, almost all plants originate from seed orchards and most plantations are planted in family blocks, thus the harvest from each clone is kept separate during seed processing, plant production and plantation.McKeand, S., et al. 2003
Deployment of genetically improved loblolly and slash pine in the South.
''Journal of Forestry'' 101(3): 32–37.


Recent seed orchard research

* The optimal balance between the effective number of clones (diversity, status number, gene diversity) and genetic gain is achieved by making clonal contributions (number of ramets) proportional (linearly dependent) to the genetic value ("linear deployment"). This is dependent on several assumptions, one of them that the contribution to the seed orchard crop is proportional to the number of ramets. But the more ramets the larger the share of the pollen is lost depending on ineffective
self-pollination Self-pollination is a form of pollination in which pollen from the same plant arrives at the stigma of a flower (in flowering plants) or at the ovule (in gymnosperms). There are two types of self-pollination: in autogamy, pollen is transferr ...
. But even considering this, the linear deployment is a very good approximation. It was thought that increasing the gain is always accompanied by a loss in effective number of clones, but it has shown that both can be obtained in the same time by genetic thinning using the linear deployment algorithm if applied to some rather unbalanced seed orchards. Relatedness among clones is more critical for diversity than inbreeding. * The clonal variation in expected seed set has been compiled for 12 adult clonal seed orchards of
Scots pine ''Pinus sylvestris'', the Scots pine (UK), Scotch pine (US) or Baltic pine, is a species of tree in the pine family Pinaceae that is native to Eurasia. It can readily be identified by its combination of fairly short, blue-green leaves and orang ...
. The seed set ability is not that drastic among clones as has been shown in other investigations which are probably less relevant for actual seed production of Scots pine. * The correlations of cone set for Scots pine in a clonal archive was not well correlated with that of the same clones in seed orchards. Thus it does not seem meaningful to increase seed set by choosing clones with a good seed set. * As supporting tree breeding make advances, new seed orchards will be genetically better than old ones. This is a relevant factor for the economic lifetime of a seed orchard. Considerations for Swedish Scots pine suggested an economic lifetime of 30 years, which is less than the current lifetime. * Seed orchards for important wind pollinated species start to produce seeds before the seed orchard trees start to produce much pollen. Thus all or most of the pollen parents are outside the seed orchard. Calculations indicates that seed orchard seeds are still to be expected to a superior alternative to older and more mature seed orchards or stand seeds. Advantage of early seeds like absence of selfing or related matings and high diversity are positive factors in the early seeds. * Swedish conifers orchards with tested clones could have 20–25 clones with more ramets from the better and less from the worse so effective ramet number is 15–18. Higher clone number results in unneeded loss of genetic gain. Lower clone numbers can still be better than existing alternatives. For southern pines in United States it may be optimal with half as many clones. * When forest tree breeding proceeds to advanced generations the candidates to seed orchards will be related and the question to what degree related clones can be tolerated in seed orchards become urgent. Gene diversity seems to be a more important consideration than inbreeding. If the number of candidates have at least eight times as much diversity (status number) as required for the seed orchard relations are not limiting and clones can be deployed as usual but restricting for half and full sibs, but if the candidate population has a lower diversity more sophisticated algorithms are needed.Lindgren D., Danusevičius D. & Rosvall O. 2008
Unequal deployment of clones to seed orchards by considering genetic gain, relatedness and gene diversity.
Forestry (Lond) (2009) 82 (1): 17–28.


See also

*
Double-pair mating Double-pair mating (DPM) is a mating (crossing) design used in plant breeding. Each individual is mated with two others. Principles In Fig. 1 a connected variant of DPM is shown. DPM is an efficient mating design in balanced breeding programme ...
*
Grafting Grafting or graftage is a horticultural technique whereby tissues of plants are joined so as to continue their growth together. The upper part of the combined plant is called the scion () while the lower part is called the rootstock. The succ ...
*
Plant nursery A nursery is a place where plants are propagated and grown to a desired size. Mostly the plants concerned are for gardening, forestry or conservation biology, rather than agriculture. They include retail nurseries, which sell to the general p ...


References

{{reflist


Further reading

*Kang, K. S. (2001)
Genetic gain and gene diversity of seed orchard crops.
(Abstract). Acta Universitatis Agriculturae Sueciae, Silvestria 187. *Lindgren, D. (Ed.
Proceedings of a Seed Orchard Conference.
Umeå, Sweden, 26–28 September 2007. 256 pages. *Prescher, F. (2007)
Seed Orchards – Genetic considerations on function, management and seed procurement.
Doctoral dissertation, Swedish University of Agricultural Sciences. Plant genetics Seeds