salt water intrusion
   HOME

TheInfoList



OR:

Saltwater intrusion is the movement of saline water into freshwater
aquifer An aquifer is an underground layer of water-bearing, permeable rock, rock fractures, or unconsolidated materials ( gravel, sand, or silt). Groundwater from aquifers can be extracted using a water well. Aquifers vary greatly in their characteris ...
s, which can lead to groundwater quality degradation, including
drinking water Drinking water is water that is used in drink or food preparation; potable water is water that is safe to be used as drinking water. The amount of drinking water required to maintain good health varies, and depends on physical activity level, a ...
sources, and other consequences. Saltwater intrusion can naturally occur in
coast The coast, also known as the coastline or seashore, is defined as the area where land meets the ocean, or as a line that forms the boundary between the land and the coastline. The Earth has around of coastline. Coasts are important zones in ...
al aquifers, owing to the
hydraulic Hydraulics (from Greek: Υδραυλική) is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counte ...
connection between
groundwater Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated ...
and
seawater Seawater, or salt water, is water from a sea or ocean. On average, seawater in the world's oceans has a salinity of about 3.5% (35 g/L, 35 ppt, 600 mM). This means that every kilogram (roughly one liter by volume) of seawater has appr ...
. Because saline water has a higher mineral content than freshwater, it is denser and has a higher water pressure. As a result, saltwater can push inland beneath the freshwater. In other topologies,
submarine groundwater discharge Submarine groundwater discharge (SGD) is a hydrological process which commonly occurs in coastal areas. It is described as submarine inflow of fresh-, and brackish groundwater from land into the sea. Submarine Groundwater Discharge is controlled by ...
can push fresh water into saltwater. Certain human activities, especially groundwater pumping from coastal freshwater wells, have increased saltwater intrusion in many coastal areas. Water extraction drops the level of fresh groundwater, reducing its water pressure and allowing saltwater to flow further inland. Other contributors to saltwater intrusion include
navigation channel Canals or artificial waterways are waterways or engineered channels built for drainage management (e.g. flood control and irrigation) or for conveyancing water transport vehicles (e.g. water taxi). They carry free, calm surface flow u ...
s or agricultural and
drainage channel Drainage is the natural or artificial removal of a surface's water and sub-surface water from an area with excess of water. The internal drainage of most agricultural soils is good enough to prevent severe waterlogging (anaerobic conditio ...
s, which provide conduits for saltwater to move inland.
Sea level rise Globally, sea levels are rising due to human-caused climate change. Between 1901 and 2018, the globally averaged sea level rose by , or 1–2 mm per year on average.IPCC, 2019Summary for Policymakers InIPCC Special Report on the Ocean and Cry ...
caused by
climate change In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
also contributes to saltwater intrusion. Saltwater intrusion can also be worsened by extreme events like hurricane storm surges.


Hydrology

At the coastal margin, fresh groundwater flowing from inland areas meets with saline groundwater from the ocean. The fresh groundwater flows from inland areas towards the coast where elevation and groundwater levels are lower. Because saltwater has a higher content of dissolved salts and minerals, it is denser than freshwater, causing it to have higher hydraulic head than freshwater. Hydraulic head refers to the liquid pressure exerted by a water column: a water column with higher hydraulic head will move into a water column with lower hydraulic head, if the columns are connected. The higher pressure and density of saltwater causes it to move into coastal aquifers in a wedge shape under the freshwater. The saltwater and freshwater meet in a transition zone where mixing occurs through
dispersion Dispersion may refer to: Economics and finance * Dispersion (finance), a measure for the statistical distribution of portfolio returns * Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variat ...
and
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
. Ordinarily the inland extent of the saltwater wedge is limited because fresh groundwater levels, or the height of the freshwater column, increases as land elevation gets higher.


Causes


Groundwater extraction

Water abstraction, Groundwater extraction is the primary cause of saltwater intrusion. Groundwater is the main source of drinking water in many coastal areas of the United States, and extraction has increased over time. Under baseline conditions, the inland extent of saltwater is limited by higher pressure exerted by the freshwater column, owing to its higher elevation. Groundwater extraction can lower the level of the water table, freshwater table, reducing the pressure exerted by the freshwater column and allowing the denser saltwater to move inland laterally. In Cape May, New Jersey, since the 1940s water withdrawals have lowered groundwater levels by up to 30 meters, reducing the water table to below sea level and causing widespread intrusion and contamination of water supply wells. Groundwater extraction can also lead to well contamination by causing upwelling, or upcoming, of saltwater from the depths of the aquifer. Under baseline conditions, a saltwater wedge extends inland, underneath the freshwater because of its higher density. Water supply wells located over or near the saltwater wedge can draw the saltwater upward, creating a saltwater cone that might reach and contaminate the well. Some aquifers are predisposed towards this type of intrusion, such as the Floridan aquifer, Lower Floridan aquifer: though a relatively Permeability (earth sciences), impermeable rock or clay layer separates fresh groundwater from saltwater, isolated cracks breach the confining layer, promoting upward movement of saltwater. Pumping of groundwater strengthens this effect by lowering the water table, reducing the downward push of freshwater.


Canals and drainage networks

The construction of canals and drainage networks can lead to saltwater intrusion. Canals provide conduits for saltwater to be carried inland, as does the deepening of existing Channel (geography), channels for navigation purposes. In Sabine Lake Estuary in the Gulf of Mexico, large-scale waterways have allowed saltwater to move into the lake, and upstream into the rivers feeding the lake. Additionally, channel dredging in the surrounding wetlands to facilitate oil and gas drilling has caused land subsidence, further promoting inland saltwater movement. Drainage networks constructed to drain flat coastal areas can lead to intrusion by lowering the freshwater table, reducing the water pressure exerted by the freshwater column. Saltwater intrusion in southeast Florida has occurred largely as a result of drainage canals built between 1903 into the 1980s to drain the Everglades for agricultural and urban development. The main cause of intrusion was the lowering of the water table, though the canals also conveyed seawater inland until the construction of water control gates.


Effect on water supply

Many coastal communities around the United States are experiencing saltwater contamination of water supply wells, and this problem has been seen for decades. Many Mediterranean coastal aquifers suffer for seawater intrusion effects. The consequences of saltwater intrusion for supply wells vary widely, depending on extent of the intrusion, the intended use of the water, and whether the salinity exceeds standards for the intended use. In some areas such as Washington State, intrusion only reaches portions of the aquifer, affecting only certain water supply wells. Other aquifers have faced more widespread salinity contamination, significantly affecting groundwater supplies for the region. For instance, in Cape May, New Jersey, where groundwater extraction has lowered water tables by up to 30 meters, saltwater intrusion has caused closure of over 120 water supply wells since the 1940s.


Ghyben–Herzberg relation

The first physical formulations of saltwater intrusion were made by in 1888 and 1889 as well as in 1901, thus called the Ghyben–Herzberg relation. They derived analytical solutions to approximate the intrusion behavior, which are based on a number of assumptions that do not hold in all field cases. In the equation,
z = \frac h
the thickness of the freshwater zone above sea level is represented as h and that below sea level is represented as z. The two thicknesses h and z, are related by \rho_f and \rho_s where \rho_f is the density of freshwater and \rho_s is the density of saltwater. Freshwater has a density of about 1.000 grams per cubic centimeter (g/cm3) at 20 °C, whereas that of seawater is about 1.025 g/cm3. The equation can be simplified to
z\ = 40 h.
The Ghyben–Herzberg ratio states that, for every meter of fresh water in an unconfined aquifer above sea level, there will be forty meters of fresh water in the aquifer below sea level. In the 20th century the vastly increased computer, computing power available allowed the use of numerical methods (usually finite differences or finite elements) that need fewer assumptions and can be applied more generally.


Modeling

Modeling of saltwater intrusion is considered difficult. Some typical difficulties that arise are: * The possible presence of fissures and cracks and fractures in the aquifer, whose precise positions and extents are unknown but which have great influence on the development of the saltwater intrusion * The possible presence of small scale heterogeneities in the hydraulic properties of the aquifer, which are too small to be taken into account by the model but which may also have great influence on the development of the saltwater intrusion * The change of hydraulic properties by the saltwater intrusion. A mixture of saltwater and freshwater is often undersaturated with respect to calcium, triggering solvation, dissolution of calcium in the mixing zone and changing hydraulic properties. * The process known as Ion exchange, cation exchange, which slows the advance of a saltwater intrusion and also slows the retreat of a saltwater intrusion. * The fact that saltwater intrusions are often not in equilibrium makes it harder to model. Aquifer dynamics tend to be slow and it takes the intrusion cone a long time to adapt to changes in pumping schemes, rainfall, etc. So the situation in the field can be significantly different from what would be expected based on the sea level, pumping scheme etc. * For long-term models, the future
climate change In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to ...
forms a large unknown but good results are possible . Model results often depend strongly on sea level and recharge rate. Both are expected to change in the future.


Mitigation and management

Saltwater is also an issue where a Canal lock, lock separates saltwater from freshwater (for example the Hiram M. Chittenden Locks in Washington). In this case a collection basin was built from which the saltwater can be pumped back to the sea. Some of the intruding saltwater is also pumped to the fish ladder to make it more attractive to migrating fish. As groundwater salinization becomes a relevant problem, more complex initiatives should be applied from local technical and engineering solutions to rules or regulatory instruments for whole aquifers or regions.


Areas of occurrence

*Water supply and sanitation in Benin, Benin *Geography of Cyprus, Cyprus *Bou Regreg (Morocco) *Water resources management in Pakistan, Pakistan *Suriname *Water supply and sanitation in Tunisia, Tunisia *United States **ACF River Basin (Florida/Georgia) **Environment of Florida **Essex County, Massachusetts **Hiram M. Chittenden Locks (Washington) **Hutchinson Island (Georgia) **Lake Lanier (Georgia) **Lake Pontchartrain (Louisiana) **Miami River (Florida) **Mississippi River Delta **Oxnard Plain (California) **San Leandro (California) **Sonoma Creek (California) **Western Shore of Lake Superior (Minnesota) *Mekong Delta *Italy


See also

*Groundwater * * * *


References

{{Reflist, 30em Aquifers Hydrogeology Hydrology Aquatic ecology Environmental issues with water Coastal geography