In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a zero (also sometimes called a root) of a
real-,
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
-, or generally
vector-valued function , is a member
of the
domain of
such that
''vanishes'' at
; that is, the function
attains the value of 0 at
, or equivalently,
is the
solution
Solution may refer to:
* Solution (chemistry), a mixture where one substance is dissolved in another
* Solution (equation), in mathematics
** Numerical solution, in numerical analysis, approximate solutions within specified error bounds
* Solut ...
to the equation
.
A "zero" of a function is thus an input value that produces an output of 0.
A root of a
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exam ...
is a zero of the corresponding
polynomial function.
The
fundamental theorem of algebra shows that any non-zero
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exam ...
has a number of roots at most equal to its
degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an
algebraically closed extension) counted with their
multiplicities.
For example, the polynomial
of degree two, defined by
has the two roots (or zeros) that are 2 and 3.
If the function maps real numbers to real numbers, then its zeros are the
-coordinates of the points where its
graph meets the
''x''-axis. An alternative name for such a point
in this context is an
-intercept.
Solution of an equation
Every
equation
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in ...
in the
unknown
Unknown or The Unknown may refer to:
Film
* ''The Unknown'' (1915 comedy film), a silent boxing film
* ''The Unknown'' (1915 drama film)
* ''The Unknown'' (1927 film), a silent horror film starring Lon Chaney
* ''The Unknown'' (1936 film), a ...
may be rewritten as
:
by regrouping all the terms in the left-hand side. It follows that the solutions of such an equation are exactly the zeros of the function
. In other words, a "zero of a function" is precisely a "solution of the equation obtained by equating the function to 0", and the study of zeros of functions is exactly the same as the study of solutions of equations.
Polynomial roots
Every real polynomial of odd
degree has an odd number of real roots (counting
multiplicities); likewise, a real polynomial of even degree must have an even number of real roots. Consequently, real odd polynomials must have at least one real root (because the smallest odd whole number is 1), whereas even polynomials may have none. This principle can be proven by reference to the
intermediate value theorem: since polynomial functions are
continuous, the function value must cross zero, in the process of changing from negative to positive or vice versa (which always happens for odd functions).
Fundamental theorem of algebra
The fundamental theorem of algebra states that every polynomial of degree
has
complex roots, counted with their multiplicities. The non-real roots of polynomials with real coefficients come in
conjugate pairs.
Vieta's formulas
In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta").
Basic formulas ...
relate the coefficients of a polynomial to sums and products of its roots.
Computing roots
Computing roots of functions, for example
polynomial functions, frequently requires the use of specialised or
approximation
An approximation is anything that is intentionally similar but not exactly equal to something else.
Etymology and usage
The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ' ...
techniques (e.g.,
Newton's method). However, some polynomial functions, including all those of
degree no greater than 4, can have all their roots expressed
algebraically in terms of their coefficients (for more, see
algebraic solution).
Zero set
In various areas of mathematics, the zero set of a
function is the set of all its zeros. More precisely, if
is a
real-valued function
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.
Real-valued functions of a real variable (commonly called ''real ...
(or, more generally, a function taking values in some
additive group), its zero set is
, the
inverse image
In mathematics, the image of a function is the set of all output values it may produce.
More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through ...
of
in
.
The term ''zero set'' is generally used when there are infinitely many zeros, and they have some non-trivial
topological properties
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological space ...
. For example, a
level set of a function
is the zero set of
. The cozero set of
is the
complement of the zero set of
(i.e., the subset of
on which
is nonzero).
The zero set of a
linear map
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
is also called
kernel.
Applications
In
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, the first definition of an
algebraic variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
is through zero sets. Specifically, an
affine algebraic set is the
intersection of the zero sets of several polynomials, in a
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...