HOME

TheInfoList



OR:

In mathematics, the real coordinate space of dimension , denoted ( ) or is the set of the -tuples of real numbers, that is the set of all sequences of real numbers. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called
coordinate vector In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. An easy example may be a position such as (5, 2, 1) in a 3-dimensiona ...
s. The
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
over any
basis Basis may refer to: Finance and accounting *Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates *Basis trading, a trading strategy consisting of ...
of the elements of a real vector space form a ''real coordinate space'' of the same dimension as that of the vector space. Similarly, the
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
of the points of a Euclidean space of dimension form a ''real coordinate space'' of dimension . These one to one correspondences between vectors, points and coordinate vectors explain the names of ''coordinate space'' and ''coordinate vector''. It allows using geometric terms and methods for studying real coordinate spaces, and, conversely, to use methods of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
in geometry. This approach of geometry was introduced by René Descartes in the 17th century. It is widely used, as it allows locating points in Euclidean spaces, and computing with them.


Definition and structures

For any natural number , the
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
consists of all - tuples of real numbers (). It is called the "-dimensional real space" or the "real -space". An element of is thus a -tuple, and is written (x_1, x_2, \ldots, x_n) where each is a real number. So, in
multivariable calculus Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving several variables, rather ...
, the domain of a function of several real variables and the codomain of a real vector valued function are subsets of for some . The real -space has several further properties, notably: * With componentwise addition and scalar multiplication, it is a real vector space. Every -dimensional real vector space is isomorphic to it. * With the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algeb ...
(sum of the term by term product of the components), it is an inner product space. Every -dimensional real inner product space is isomorphic to it. * As every inner product space, it is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
, and a topological vector space. * It is a Euclidean space and a real
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relate ...
, and every Euclidean or affine space is isomorphic to it. * It is an
analytic manifold In mathematics, an analytic manifold, also known as a C^\omega manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic g ...
, and can be considered as the prototype of all
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
s, as, by definition, a manifold is, near each point, isomorphic to an open subset of . * It is an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
, and every real algebraic variety is a subset of . These properties and structures of make it fundamental in almost all areas of mathematics and their application domains, such as statistics,
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
, and many parts of physics.


The domain of a function of several variables

Any function of real variables can be considered as a function on (that is, with as its domain). The use of the real -space, instead of several variables considered separately, can simplify notation and suggest reasonable definitions. Consider, for , a function composition of the following form: F(t) = f(g_1(t),g_2(t)), where functions and are
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous g ...
. If * is continuous (by ) * is continuous (by ) then is not necessarily continuous. Continuity is a stronger condition: the continuity of in the natural topology ( discussed below), also called ''multivariable continuity'', which is sufficient for continuity of the composition .


Vector space

The coordinate space forms an -dimensional vector space over the
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
of real numbers with the addition of the structure of linearity, and is often still denoted . The operations on as a vector space are typically defined by \mathbf x + \mathbf y = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) \alpha \mathbf x = (\alpha x_1, \alpha x_2, \ldots, \alpha x_n). The zero vector is given by \mathbf 0 = (0, 0, \ldots, 0) and the
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
of the vector is given by -\mathbf x = (-x_1, -x_2, \ldots, -x_n). This structure is important because any -dimensional real vector space is isomorphic to the vector space .


Matrix notation

In standard
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
notation, each element of is typically written as a
column vector In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, c ...
\mathbf x = \begin x_1 \\ x_2 \\ \vdots \\ x_n \end and sometimes as a
row vector In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, c ...
: \mathbf x = \begin x_1 & x_2 & \cdots & x_n \end. The coordinate space may then be interpreted as the space of all
column vector In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, c ...
s, or all
row vector In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, c ...
s with the ordinary matrix operations of addition and scalar multiplication. Linear transformations from to may then be written as matrices which act on the elements of via left multiplication (when the elements of are column vectors) and on elements of via right multiplication (when they are row vectors). The formula for left multiplication, a special case of
matrix multiplication In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the ...
, is: (A)_k = \sum_^n A_ x_l Any linear transformation is a continuous function (see
below Below may refer to: *Earth * Ground (disambiguation) *Soil *Floor * Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname *Ernst von Below (1863–1955), German World War I general *Fred Below ...
). Also, a matrix defines an open map from to if and only if the rank of the matrix equals to .


Standard basis

The coordinate space comes with a standard basis: \begin \mathbf e_1 & = (1, 0, \ldots, 0) \\ \mathbf e_2 & = (0, 1, \ldots, 0) \\ & \;\; \vdots \\ \mathbf e_n & = (0, 0, \ldots, 1) \end To see that this is a basis, note that an arbitrary vector in can be written uniquely in the form \mathbf x = \sum_^n x_i \mathbf_i.


Geometric properties and uses


Orientation

The fact that
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
, unlike many other
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 *Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
, constitute an ordered field yields an orientation structure on . Any full-rank linear map of to itself either preserves or reverses orientation of the space depending on the sign of the determinant of its matrix. If one permutes coordinates (or, in other words, elements of the basis), the resulting orientation will depend on the parity of the permutation. Diffeomorphisms of or domains in it, by their virtue to avoid zero
Jacobian In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: * Jacobian matrix and determinant * Jacobian elliptic functions * Jacobian variety *Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähle ...
, are also classified to orientation-preserving and orientation-reversing. It has important consequences for the theory of differential forms, whose applications include electrodynamics. Another manifestation of this structure is that the point reflection in has different properties depending on evenness of . For even it preserves orientation, while for odd it is reversed (see also improper rotation).


Affine space

understood as an affine space is the same space, where as a vector space
acts The Acts of the Apostles ( grc-koi, Πράξεις Ἀποστόλων, ''Práxeis Apostólōn''; la, Actūs Apostolōrum) is the fifth book of the New Testament; it tells of the founding of the Christian Church and the spread of its message ...
by translations. Conversely, a vector has to be understood as a " difference between two points", usually illustrated by a directed line segment connecting two points. The distinction says that there is no
canonical The adjective canonical is applied in many contexts to mean "according to the canon" the standard, rule or primary source that is accepted as authoritative for the body of knowledge or literature in that context. In mathematics, "canonical exampl ...
choice of where the
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * Origin (comics), ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * The Origin (Buffy comic), ''The Origin'' (Bu ...
should go in an affine -space, because it can be translated anywhere.


Convexity

In a real vector space, such as , one can define a convex
cone A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines conn ...
, which contains all ''non-negative'' linear combinations of its vectors. Corresponding concept in an affine space is a convex set, which allows only
convex combination In convex geometry and vector algebra, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1. In other wor ...
s (non-negative linear combinations that sum to 1). In the language of universal algebra, a vector space is an algebra over the universal vector space of finite sequences of coefficients, corresponding to finite sums of vectors, while an affine space is an algebra over the universal affine hyperplane in this space (of finite sequences summing to 1), a cone is an algebra over the universal orthant (of finite sequences of nonnegative numbers), and a convex set is an algebra over the universal simplex (of finite sequences of nonnegative numbers summing to 1). This geometrizes the axioms in terms of "sums with (possible) restrictions on the coordinates". Another concept from convex analysis is a convex function from to real numbers, which is defined through an
inequality Inequality may refer to: Economics * Attention inequality, unequal distribution of attention across users, groups of people, issues in etc. in attention economy * Economic inequality, difference in economic well-being between population groups * ...
between its value on a convex combination of
points Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Points ...
and sum of values in those points with the same coefficients.


Euclidean space

The
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algeb ...
\mathbf\cdot\mathbf = \sum_^n x_iy_i = x_1y_1+x_2y_2+\cdots+x_ny_n defines the
norm Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envi ...
on the vector space . If every vector has its Euclidean norm, then for any pair of points the distance d(\mathbf, \mathbf) = \, \mathbf - \mathbf\, = \sqrt is defined, providing a
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
structure on in addition to its affine structure. As for vector space structure, the dot product and Euclidean distance usually are assumed to exist in without special explanations. However, the real -space and a Euclidean -space are distinct objects, strictly speaking. Any Euclidean -space has a
coordinate system In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
where the dot product and Euclidean distance have the form shown above, called ''Cartesian''. But there are ''many'' Cartesian coordinate systems on a Euclidean space. Conversely, the above formula for the Euclidean metric defines the ''standard'' Euclidean structure on , but it is not the only possible one. Actually, any positive-definite quadratic form defines its own "distance" , but it is not very different from the Euclidean one in the sense that \exist C_1 > 0,\ \exist C_2 > 0,\ \forall \mathbf, \mathbf \in \mathbb^n: C_1 d(\mathbf, \mathbf) \le \sqrt \le C_2 d(\mathbf, \mathbf). Such a change of the metric preserves some of its properties, for example the property of being a complete metric space. This also implies that any full-rank linear transformation of , or its
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
, does not magnify distances more than by some fixed , and does not make distances smaller than times, a fixed finite number times smaller. The aforementioned equivalence of metric functions remains valid if is replaced with , where is any convex positive homogeneous function of degree 1, i.e. a vector norm (see Minkowski distance for useful examples). Because of this fact that any "natural" metric on is not especially different from the Euclidean metric, is not always distinguished from a Euclidean -space even in professional mathematical works.


In algebraic and differential geometry

Although the definition of a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
does not require that its model space should be , this choice is the most common, and almost exclusive one in differential geometry. On the other hand,
Whitney embedding theorem In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney: *The strong Whitney embedding theorem states that any smooth real -dimensional manifold (required also to be Hausdorff ...
s state that any real differentiable -dimensional manifold can be embedded into .


Other appearances

Other structures considered on include the one of a pseudo-Euclidean space,
symplectic structure Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Ham ...
(even ), and
contact structure In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution ma ...
(odd ). All these structures, although can be defined in a coordinate-free manner, admit standard (and reasonably simple) forms in coordinates. is also a real vector subspace of which is invariant to
complex conjugation In mathematics, the complex conjugate of a complex number is the number with an equal real part and an Imaginary number, imaginary part equal in magnitude but opposite in Sign (mathematics), sign. That is, (if a and b are real, then) the complex ...
; see also
complexification In mathematics, the complexification of a vector space over the field of real numbers (a "real vector space") yields a vector space over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include ...
.


Polytopes in R''n''

There are three families of polytopes which have simple representations in spaces, for any , and can be used to visualize any affine coordinate system in a real -space. Vertices of a hypercube have coordinates where each takes on one of only two values, typically 0 or 1. However, any two numbers can be chosen instead of 0 and 1, for example and 1. An -hypercube can be thought of as the Cartesian product of identical intervals (such as the unit interval ) on the real line. As an -dimensional subset it can be described with a system of inequalities: \begin 0 \le x_1 \le 1 \\ \vdots \\ 0 \le x_n \le 1 \end for , and \begin , x_1, \le 1 \\ \vdots \\ , x_n, \le 1 \end for . Each vertex of the
cross-polytope In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
has, for some , the coordinate equal to ±1 and all other coordinates equal to 0 (such that it is the th standard basis vector up to sign). This is a
dual polytope In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. ...
of hypercube. As an -dimensional subset it can be described with a single inequality which uses the
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
operation: \sum_^n , x_k, \le 1\,, but this can be expressed with a system of linear inequalities as well. The third polytope with simply enumerable coordinates is the
standard simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimensi ...
, whose vertices are standard basis vectors and the origin . As an -dimensional subset it is described with a system of linear inequalities: \begin 0 \le x_1 \\ \vdots \\ 0 \le x_n \\ \sum\limits_^n x_k \le 1 \end Replacement of all "≤" with "<" gives interiors of these polytopes.


Topological properties

The topological structure of (called standard topology, Euclidean topology, or usual topology) can be obtained not only from Cartesian product. It is also identical to the natural topology induced by Euclidean metric discussed above: a set is open in the Euclidean topology if and only if it contains an open ball around each of its points. Also, is a
linear topological space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is al ...
(see continuity of linear maps above), and there is only one possible (non-trivial) topology compatible with its linear structure. As there are many open linear maps from to itself which are not isometries, there can be many Euclidean structures on which correspond to the same topology. Actually, it does not depend much even on the linear structure: there are many non-linear diffeomorphisms (and other homeomorphisms) of onto itself, or its parts such as a Euclidean open ball or the interior of a hypercube). has the
topological dimension In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way. Informal discussion For ordinary Euclidean ...
. An important result on the topology of , that is far from superficial, is Brouwer's invariance of domain. Any subset of (with its subspace topology) that is homeomorphic to another open subset of is itself open. An immediate consequence of this is that is not homeomorphic to if – an intuitively "obvious" result which is nonetheless difficult to prove. Despite the difference in topological dimension, and contrary to a naïve perception, it is possible to map a lesser-dimensional real space continuously and surjectively onto . A continuous (although not smooth) space-filling curve (an image of ) is possible.


Examples


''n'' ≤ 1

Cases of do not offer anything new: is the
real line In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a poin ...
, whereas (the space containing the empty column vector) is a
singleton Singleton may refer to: Sciences, technology Mathematics * Singleton (mathematics), a set with exactly one element * Singleton field, used in conformal field theory Computing * Singleton pattern, a design pattern that allows only one instance ...
, understood as a zero vector space. However, it is useful to include these as
trivial Trivia is information and data that are considered to be of little value. It can be contrasted with general knowledge and common sense. Latin Etymology The ancient Romans used the word ''triviae'' to describe where one road split or fork ...
cases of theories that describe different .


''n'' = 2


''n'' = 3


''n'' = 4

can be imagined using the fact that points , where each is either 0 or 1, are vertices of a
tesseract In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eig ...
(pictured), the 4-hypercube (see above). The first major use of is a spacetime model: three spatial coordinates plus one temporal. This is usually associated with theory of relativity, although four dimensions were used for such models since Galilei. The choice of theory leads to different structure, though: in Galilean relativity the coordinate is privileged, but in Einsteinian relativity it is not. Special relativity is set in Minkowski space. General relativity uses curved spaces, which may be thought of as with a curved metric for most practical purposes. None of these structures provide a (positive-definite) metric on . Euclidean also attracts the attention of mathematicians, for example due to its relation to quaternions, a 4-dimensional real algebra themselves. See rotations in 4-dimensional Euclidean space for some information. In differential geometry, is the only case where admits a non-standard differential structure: see exotic R4.


Norms on

One could define many norms on the vector space . Some common examples are * the
p-norm In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbak ...
, defined by \, \mathbf\, _p := \sqrt /math> for all \mathbf \in \R^n where p is a positive integer. The case p = 2 is very important, because it is exactly the Euclidean norm. * the \infty-norm or maximum norm, defined by \, \mathbf\, _\infty:=\max \ for all \mathbf \in \R^n. This is the limit of all the
p-norm In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbak ...
s: \, \mathbf\, _\infty = \lim_ \sqrt /math>. A really surprising and helpful result is that every norm defined on is
equivalent Equivalence or Equivalent may refer to: Arts and entertainment *Album-equivalent unit, a measurement unit in the music industry *Equivalence class (music) *''Equivalent VIII'', or ''The Bricks'', a minimalist sculpture by Carl Andre *'' Equival ...
. This means for two arbitrary norms \, \cdot\, and \, \cdot\, ' on you can always find positive real numbers \alpha,\beta > 0, such that \alpha \cdot \, \mathbf\, \leq \, \mathbf\, ' \leq \beta\cdot\, \mathbf\, for all \mathbf \in \R^n. This defines an equivalence relation on the set of all norms on . With this result you can check that a sequence of vectors in converges with \, \cdot\, if and only if it converges with \, \cdot\, '. Here is a sketch of what a proof of this result may look like: Because of the equivalence relation it is enough to show that every norm on is equivalent to the Euclidean norm \, \cdot\, _2. Let \, \cdot\, be an arbitrary norm on . The proof is divided in two steps: * We show that there exists a \beta > 0, such that \, \mathbf\, \leq \beta \cdot \, \mathbf\, _2 for all \mathbf \in \R^n. In this step you use the fact that every \mathbf = (x_1, \dots, x_n) \in \R^n can be represented as a linear combination of the standard
basis Basis may refer to: Finance and accounting *Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates *Basis trading, a trading strategy consisting of ...
: \mathbf = \sum_^n e_i \cdot x_i. Then with the
Cauchy–Schwarz inequality The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) is considered one of the most important and widely used inequalities in mathematics. The inequality for sums was published by . The corresponding inequality fo ...
\, \mathbf\, = \left\, \sum_^n e_i \cdot x_i \right\, \leq \sum_^n \, e_i\, \cdot , x_i, \leq \sqrt \cdot \sqrt = \beta \cdot \, \mathbf\, _2, where \beta := \sqrt. * Now we have to find an \alpha > 0, such that \alpha\cdot\, \mathbf\, _2 \leq \, \mathbf\, for all \mathbf \in \R^n. Assume there is no such \alpha. Then there exists for every k \in \mathbb a \mathbf_k \in \R^n, such that \, \mathbf_k\, _2 > k \cdot \, \mathbf_k\, . Define a second sequence (\tilde_k)_ by \tilde_k := \frac. This sequence is bounded because \, \tilde_k\, _2 = 1. So because of the
Bolzano–Weierstrass theorem In mathematics, specifically in real analysis, the Bolzano–Weierstrass theorem, named after Bernard Bolzano and Karl Weierstrass, is a fundamental result about convergence in a finite-dimensional Euclidean space \R^n. The theorem states that eac ...
there exists a convergent subsequence (\tilde_)_ with limit \mathbf \in . Now we show that \, \mathbf\, _2 = 1 but \mathbf = \mathbf, which is a contradiction. It is \, \mathbf\, \leq \left\, \mathbf - \tilde_\right\, + \left\, \tilde_\right\, \leq \beta \cdot \left\, \mathbf - \tilde_\right\, _2 + \frac \ \overset \ 0, because \, \mathbf-\tilde_\, \to 0 and 0 \leq \frac < \frac, so \frac \to 0. This implies \, \mathbf\, = 0, so \mathbf= \mathbf. On the other hand \, \mathbf\, _2 = 1, because \, \mathbf\, _2 = \left\, \lim_\tilde_ \right\, _2 = \lim_ \left\, \tilde_ \right\, _2 = 1. This can not ever be true, so the assumption was false and there exists such a \alpha > 0.


See also

* Exponential object, for theoretical explanation of the superscript notation * Real projective space


Footnotes


References

* * {{Real numbers Topological vector spaces Analytic geometry Multivariable calculus Mathematical analysis