HOME

TheInfoList



OR:

In mathematics, a real closed field is a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''F'' that has the same
first-order In mathematics and other formal sciences, first-order or first order most often means either: * "linear" (a polynomial of degree at most one), as in first-order approximation and other calculus uses, where it is contrasted with "polynomials of high ...
properties as the field of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of
hyperreal number In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers ...
s.


Definitions

A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is
elementarily equivalent In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often ...
to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F''
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is b ...
it is true in the reals. #There is a
total order In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflex ...
on ''F'' making it an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered fiel ...
such that, in this ordering, every positive element of ''F'' has a
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
in ''F'' and any
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
of
odd Odd means unpaired, occasional, strange or unusual, or a person who is viewed as eccentric. Odd may also refer to: Acronym * ODD (Text Encoding Initiative) ("One Document Does it all"), an abstracted literate-programming format for describing X ...
degree with coefficients in ''F'' has at least one
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
in ''F''. #''F'' is a
formally real field In mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field. Alternative definitions The definition given above i ...
such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' of ''F'' there is ''b'' in ''F'' such that ''a'' = ''b''2 or ''a'' = −''b''2. #''F'' is not
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
, but its
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ( ...
is a
finite extension In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory &mdash ...
. #''F'' is not algebraically closed but the field extension F(\sqrt\,) is algebraically closed. #There is an ordering on ''F'' that does not extend to an ordering on any proper
algebraic extension In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field ext ...
of ''F''. #''F'' is a formally real field such that no proper algebraic extension of ''F'' is formally real. (In other words, the field is maximal in an algebraic closure with respect to the property of being formally real.) #There is an ordering on ''F'' making it an ordered field such that, in this ordering, the intermediate value theorem holds for all polynomials over ''F'' with degree ''≥'' 0. # ''F'' is a weakly o-minimal ordered field. If ''F'' is an ordered field, the Artin–Schreier theorem states that ''F'' has an algebraic extension, called the real closure ''K'' of ''F'', such that ''K'' is a real closed field whose ordering is an extension of the given ordering on ''F'', and is unique up to a unique
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
of fields identical on ''F''Rajwade (1993) pp. 222–223 (note that every
ring homomorphism In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is: :addition preser ...
between real closed fields automatically is order preserving, because ''x'' ≤ ''y'' if and only if ∃''z'' : ''y'' = ''x'' + ''z''2). For example, the real closure of the ordered field of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s is the field \mathbb_\mathrm of real algebraic numbers. The
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of t ...
is named for Emil Artin and
Otto Schreier Otto Schreier (3 March 1901 in Vienna, Austria – 2 June 1929 in Hamburg, Germany) was a Jewish-Austrian mathematician who made major contributions in combinatorial group theory and in the topology of Lie groups. Life His parents were the arch ...
, who proved it in 1926. If (''F'', ''P'') is an ordered field, and ''E'' is a
Galois extension In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ' ...
of ''F'', then by Zorn's Lemma there is a maximal ordered field extension (''M'', ''Q'') with ''M'' a subfield of ''E'' containing ''F'' and the order on ''M'' extending ''P''. This ''M'', together with its ordering ''Q'', is called the relative real closure of (''F'', ''P'') in ''E''. We call (''F'', ''P'') real closed relative to ''E'' if ''M'' is just ''F''. When ''E'' is the algebraic closure of ''F'' the relative real closure of ''F'' in ''E'' is actually the real closure of ''F'' described earlier.Efrat (2006) p. 177 If ''F'' is a field (no ordering compatible with the field operations is assumed, nor is it assumed that ''F'' is orderable) then ''F'' still has a real closure, which may not be a field anymore, but just a real closed ring. For example, the real closure of the field \mathbb(\sqrt 2) is the
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
\mathbb_\mathrm \!\times \mathbb_\mathrm (the two copies correspond to the two orderings of \mathbb(\sqrt 2)). On the other hand, if \mathbb(\sqrt 2) is considered as an ordered subfield of \mathbb, its real closure is again the field \mathbb_\mathrm.


Decidability and quantifier elimination

The
language Language is a structured system of communication. The structure of a language is its grammar and the free components are its vocabulary. Languages are the primary means by which humans communicate, and may be conveyed through a variety of ...
of real closed fields \mathcal_\text includes symbols for the operations of addition and multiplication, the constants 0 and 1, and the order relation (as well as equality, if this is not considered a logical symbol). In this language, the (first-order) theory of real closed fields, \mathcal_\text, consists of the following: * the axioms of
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered fiel ...
s; * the axiom asserting that every positive number has a square root; * for every odd number d, the axiom asserting that all polynomials of degree d have at least one root. All of the above axioms can be expressed in
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifie ...
(i.e. quantification ranges only over elements of the field). Tarski proved () that \mathcal_\text is complete, meaning that for any \mathcal_\text-sentence, it can be proven either true or false from the above axioms. Furthermore, \mathcal_\text is decidable, meaning that there is an
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
to decide the truth or falsity of any such sentence. The
Tarski–Seidenberg theorem In mathematics, the Tarski–Seidenberg theorem states that a set in (''n'' + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto ''n''-dimensional space, and the resulting set is still defin ...
extends this result to decidable
quantifier elimination Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement "\exists x such that \ldots" can be viewed as a question "When is there an x such t ...
. That is, there is an algorithm that, given any \mathcal_\text- formula, which may contain
free variable In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not ...
s, produces an equivalent quantifier-free formula in the same free variables, where ''equivalent'' means that the two formulas are true for exactly the same values of the variables. The Tarski–Seidenberg theorem is an extension of the decidability theorem, as it can be easily checked whether a quantifier-free formula without free variables is ''true'' or ''false''. This theorem can be further extended to the following ''projection theorem''. If is a real closed field, a formula with free variables defines a subset of , the set of the points that satisfy the formula. Such a subset is called a
semialgebraic set In mathematics, a semialgebraic set is a subset ''S'' of ''Rn'' for some real closed field ''R'' (for example ''R'' could be the field of real numbers) defined by a finite sequence of polynomial equations (of the form P(x_1,...,x_n) = 0) and ine ...
. Given a subset of variables, the ''projection'' from to is the
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
that maps every -tuple to the -tuple of the components corresponding to the subset of variables. The projection theorem asserts that a projection of a semialgebraic set is a semialgebraic set, and that there is an algorithm that, given a quantifier-free formula defining a semialgebraic set, produces a quantifier-free formula for its projection. In fact, the projection theorem is equivalent to quantifier elimination, as the projection of a semialgebraic set defined by the formula is defined by :(\exists x) P(x,y), where and represent respectively the set of eliminated variables, and the set of kept variables. The decidability of a first-order theory of the real numbers depends dramatically on the primitive operations and functions that are considered (here addition and multiplication). Adding other functions symbols, for example, the sine or the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, ...
, can provide undecidable theories; see
Richardson's theorem In mathematics, Richardson's theorem establishes the undecidability of the equality of real numbers defined by expressions involving integers, , \ln 2, and exponential and sine functions. It was proved in 1968 by mathematician and computer scient ...
and Decidability of first-order theories of the real numbers.


Complexity of deciding 𝘛rcf

Tarski's original algorithm for
quantifier elimination Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement "\exists x such that \ldots" can be viewed as a question "When is there an x such t ...
has nonelementary computational complexity, meaning that no tower :2^ can bound the execution time of the algorithm if is the size of the input formula. The
cylindrical algebraic decomposition In mathematics, cylindrical algebraic decomposition (CAD) is a notion, and an algorithm to compute it, that are fundamental for computer algebra and real algebraic geometry. Given a set ''S'' of polynomials in R''n'', a cylindrical algebraic decom ...
, introduced by
George E. Collins George E. Collins (January 10, 1928 in Stuart, Iowa – November 21, 2017 in Madison, Wisconsin) was an American mathematician and computer scientist. He is the inventor of Garbage collection (computer science), garbage collection by reference co ...
, provides a much more practicable algorithm of complexity :d^ where is the total number of variables (free and bound), is the product of the degrees of the polynomials occurring in the formula, and is big O notation. Davenport and Heintz (1988) proved that this
worst-case complexity In computer science (specifically computational complexity theory), the worst-case complexity measures the System resource, resources (e.g. running time, Computer memory, memory) that an algorithm requires given an input of arbitrary size (commonl ...
is nearly optimal for quantifier elimination by producing a family of formulas of length , with quantifiers, and involving polynomials of constant degree, such that any quantifier-free formula equivalent to must involve polynomials of degree 2^ and length 2^, where \Omega(n) is big Ω notation. This shows that both the time complexity and the space complexity of quantifier elimination are intrinsically double exponential. For the decision problem, Ben-Or, Kozen, and Reif (1986) claimed to have proved that the theory of real closed fields is decidable in exponential space, and therefore in double exponential time, but their argument (in the case of more than one variable) is generally held as flawed; see Renegar (1992) for a discussion. For purely existential formulas, that is for formulas of the form : where stands for either or , the complexity is lower. Basu and
Roy Roy is a masculine given name and a family surname with varied origin. In Anglo-Norman England, the name derived from the Norman ''roy'', meaning "king", while its Old French cognate, ''rey'' or ''roy'' (modern ''roi''), likewise gave rise to ...
(1996) provided a well-behaved algorithm to decide the truth of such an existential formula with complexity of arithmetic operations and polynomial space.


Order properties

A crucially important property of the real numbers is that it is an
Archimedean field In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, typical ...
, meaning it has the Archimedean property that for any real number, there is an
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
larger than it in absolute value. An equivalent statement is that for any real number, there are integers both larger and smaller. Such real closed fields that are not Archimedean, are
non-Archimedean ordered field In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Examples are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational function ...
s. For example, any field of
hyperreal number In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers ...
s is real closed and non-Archimedean. The Archimedean property is related to the concept of
cofinality In mathematics, especially in order theory, the cofinality cf(''A'') of a partially ordered set ''A'' is the least of the cardinalities of the cofinal subsets of ''A''. This definition of cofinality relies on the axiom of choice, as it uses the ...
. A set ''X'' contained in an ordered set ''F'' is cofinal in ''F'' if for every ''y'' in ''F'' there is an ''x'' in ''X'' such that ''y'' < ''x''. In other words, ''X'' is an unbounded sequence in ''F''. The cofinality of ''F'' is the cardinality of the smallest cofinal set, which is to say, the size of the smallest cardinality giving an unbounded sequence. For example,
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
s are cofinal in the reals, and the cofinality of the reals is therefore \aleph_0. We have therefore the following invariants defining the nature of a real closed field ''F'': * The cardinality of ''F''. * The cofinality of ''F''. To this we may add * The weight of ''F'', which is the minimum size of a dense subset of ''F''. These three cardinal numbers tell us much about the order properties of any real closed field, though it may be difficult to discover what they are, especially if we are not willing to invoke the
generalized continuum hypothesis In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to ...
. There are also particular properties that may or may not hold: * A field ''F'' is complete if there is no ordered field ''K'' properly containing ''F'' such that ''F'' is dense in ''K''. If the cofinality of ''F'' is ''κ'', this is equivalent to saying
Cauchy sequence In mathematics, a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite numbe ...
s indexed by ''κ'' are convergent in ''F''. * An ordered field ''F'' has the
eta set Eta (uppercase , lowercase ; grc, ἦτα ''ē̂ta'' or ell, ήτα ''ita'' ) is the seventh letter of the Greek alphabet, representing the close front unrounded vowel . Originally denoting the voiceless glottal fricative in most dialects, ...
property η''α'', for the ordinal number ''α'', if for any two subsets ''L'' and ''U'' of ''F'' of cardinality less than \aleph_\alpha such that every element of ''L'' is less than every element of ''U'', there is an element ''x'' in ''F'' with ''x'' larger than every element of ''L'' and smaller than every element of ''U''. This is closely related to the model-theoretic property of being a
saturated model In mathematical logic, and particularly in its subfield model theory, a saturated model ''M'' is one that realizes as many complete types as may be "reasonably expected" given its size. For example, an ultrapower model of the hyperreals is \ ...
; any two real closed fields are η''α'' if and only if they are \aleph_\alpha-saturated, and moreover two η''α'' real closed fields both of cardinality \aleph_\alpha are order isomorphic.


The generalized continuum hypothesis

The characteristics of real closed fields become much simpler if we are willing to assume the
generalized continuum hypothesis In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to ...
. If the continuum hypothesis holds, all real closed fields with cardinality of the continuum and having the ''η''1 property are order isomorphic. This unique field ''Ϝ'' can be defined by means of an
ultrapower The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factor ...
, as \mathbb^/\mathbf, where M is a maximal ideal not leading to a field order-isomorphic to \mathbb. This is the most commonly used hyperreal number field in
nonstandard analysis The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using (ε, δ)-definitio ...
, and its uniqueness is equivalent to the continuum hypothesis. (Even without the continuum hypothesis we have that if the cardinality of the continuum is \aleph_\beta then we have a unique ''η''''β'' field of size ''η''''β''.) Moreover, we do not need ultrapowers to construct ''Ϝ'', we can do so much more constructively as the subfield of series with a
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
number of nonzero terms of the field \mathbb G of formal power series on a
totally ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive ...
abelian
divisible group In mathematics, especially in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an ''n''th multiple for each positive in ...
''G'' that is an ''η''1 group of cardinality \aleph_1 . ''Ϝ'' however is not a complete field; if we take its completion, we end up with a field ''Κ'' of larger cardinality. ''Ϝ'' has the cardinality of the continuum, which by hypothesis is \aleph_1, ''Κ'' has cardinality \aleph_2, and contains ''Ϝ'' as a dense subfield. It is not an ultrapower but it ''is'' a hyperreal field, and hence a suitable field for the usages of nonstandard analysis. It can be seen to be the higher-dimensional analogue of the real numbers; with cardinality \aleph_2 instead of \aleph_1, cofinality \aleph_1 instead of \aleph_0, and weight \aleph_1 instead of \aleph_0, and with the ''η''1 property in place of the ''η''0 property (which merely means between any two real numbers we can find another).


Examples of real closed fields

* the real
algebraic numbers An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
* the
computable number In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive ...
s * the
definable number Informally, a definable real number is a real number that can be uniquely specified by its description. The description may be expressed as a construction or as a formula of a formal language. For example, the positive square root of 2, \sqrt, ca ...
s * the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s *
superreal number In abstract algebra, the superreal numbers are a class of extensions of the real numbers, introduced by H. Garth Dales and W. Hugh Woodin as a generalization of the hyperreal numbers and primarily of interest in non-standard analysis, model theo ...
s *
hyperreal number In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers ...
s * the
Puiseux series In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series : \begin x^ &+ 2x^ + x^ + 2x^ + x^ + x^5 + \cdots\\ &=x^+ 2x^ + x^ + 2x^ + x^ + ...
with real coefficients * the
surreal number In mathematics, the surreal number system is a totally ordered proper class containing the real numbers as well as infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals ...
s


Notes


References

* * Basu, Saugata, Richard Pollack, and
Marie-Françoise Roy Marie-Françoise Roy (born 28 April 1950 in Paris) is a French mathematician noted for her work in real algebraic geometry. She has been Professor of Mathematics at the University of Rennes 1 since 1985 and in 2009 was made a ''Chevalier'' of the ...
(2003) "Algorithms in real algebraic geometry" in ''Algorithms and computation in mathematics''. Springer.
online version
* Michael Ben-Or, Dexter Kozen, and John Reif,
The complexity of elementary algebra and geometry
', Journal of Computer and Systems Sciences 32 (1986), no. 2, pp. 251–264. * Caviness, B F, and Jeremy R. Johnson, eds. (1998) ''Quantifier elimination and cylindrical algebraic decomposition''. Springer. * Chen Chung Chang and
Howard Jerome Keisler Howard Jerome Keisler (born 3 December 1936) is an American mathematician, currently professor emeritus at University of Wisconsin–Madison. His research has included model theory and non-standard analysis. His Ph.D. advisor was Alfred Tarski a ...
(1989) ''Model Theory''. North-Holland. * Dales, H. G., and
W. Hugh Woodin William Hugh Woodin (born April 23, 1955) is an American mathematician and set theorist at Harvard University. He has made many notable contributions to the theory of inner models and determinacy. A type of large cardinals, the Woodin cardinals, ...
(1996) ''Super-Real Fields''. Oxford Univ. Press. * * * Macpherson, D., Marker, D. and Steinhorn, C., ''Weakly o-minimal structures and real closed fields'', Trans. of the American Math. Soc., Vol. 352, No. 12, 1998. * Mishra, Bhubaneswar (1997)
Computational Real Algebraic Geometry
" in ''Handbook of Discrete and Computational Geometry''. CRC Press. 2004 edition, p. 743. * * * *
Alfred Tarski Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician a ...
(1951) ''A Decision Method for Elementary Algebra and Geometry''. Univ. of California Press. *


External links

{{Commons category
''Real Algebraic and Analytic Geometry Preprint Server''''Model Theory preprint server''
Field (mathematics) Real algebraic geometry