HOME

TheInfoList



OR:

A quasiperiodic
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
, or quasicrystal, is a
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such a ...
that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks
translational symmetry In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by . In physics and mathematics, continuous translational symmetry is the invariance of a system of equati ...
. While crystals, according to the classical crystallographic restriction theorem, can possess only two-, three-, four-, and six-fold
rotational symmetries Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which i ...
, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
orders—for instance, five-fold.
Aperiodic tiling An aperiodic tiling is a non-periodic tiling with the additional property that it does not contain arbitrarily large periodic regions or patches. A set of tile-types (or prototiles) is aperiodic if copies of these tiles can form only non- peri ...
s were discovered by mathematicians in the early 1960s, and, some twenty years later, they were found to apply to the study of natural quasicrystals. The discovery of these aperiodic forms in nature has produced a
paradigm shift A paradigm shift, a concept brought into the common lexicon by the American physicist and philosopher Thomas Kuhn, is a fundamental change in the basic concepts and experimental practices of a scientific discipline. Even though Kuhn restricted ...
in the field of
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics ( condensed matter physics). The wor ...
. In crystallography the quasicrystals were predicted in 1981 by a five-fold symmetry study of Alan Lindsay Mackay,—that also brought in 1982, with the crystallographic
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
of a
Penrose tiling A Penrose tiling is an example of an aperiodic tiling. Here, a ''tiling'' is a covering of the plane by non-overlapping polygons or other shapes, and ''aperiodic'' means that shifting any tiling with these shapes by any finite distance, without ...
,Alan L. Mackay, "Crystallography and the Penrose Pattern", ''Physica'' 114 A, 609 (1982). the possibility of identifying quasiperiodic order in a material through diffraction. Quasicrystals had been investigated and observed earlier, but, until the 1980s, they were disregarded in favor of the prevailing views about the atomic structure of matter. In 2009, after a dedicated search, a mineralogical finding, icosahedrite, offered evidence for the existence of natural quasicrystals. Roughly, an ordering is non-periodic if it lacks
translational symmetry In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by . In physics and mathematics, continuous translational symmetry is the invariance of a system of equati ...
, which means that a shifted copy will never match exactly with its original. The more precise mathematical definition is that there is never translational symmetry in more than ''n'' – 1
linearly independent In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts are ...
directions, where ''n'' is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two directions. Symmetrical diffraction patterns result from the existence of an indefinitely large number of elements with a regular spacing, a property loosely described as long-range order. Experimentally, the aperiodicity is revealed in the unusual symmetry of the diffraction pattern, that is, symmetry of orders other than two, three, four, or six. In 1982 materials scientist
Dan Shechtman Dan Shechtman ( he, דן שכטמן; born January 24, 1941)Dan Shechtman
. (PDF). Retri ...
observed that certain
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
-
manganese Manganese is a chemical element with the Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of ...
alloys produced the unusual diffractograms which today are seen as revelatory of quasicrystal structures. Due to fear of the scientific community's reaction, it took him two years to publish the results for which he was awarded the
Nobel Prize in Chemistry ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then "M ...
in 2011. On 25 October 2018, Luca Bindi and
Paul Steinhardt Paul Joseph Steinhardt (born December 25, 1952) is an American theoretical physicist whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professor in Science at Princeton University, where ...
were awarded the Aspen Institute 2018 Prize for collaboration and scientific research between Italy and the United States, after they discovered icosahedrite, the first quasicrystal known to occur naturally.


History

On July 16, 1945, in Alamogordo, New Mexico, the
Trinity The Christian doctrine of the Trinity (, from 'threefold') is the central dogma concerning the nature of God in most Christian churches, which defines one God existing in three coequal, coeternal, consubstantial divine persons: God th ...
nuclear bomb test produced icosahedral quasicrystals. They went unnoticed at the time of the test but were later identified in samples of red
Trinitite Trinitite, also known as atomsite or Alamogordo glass, is the glassy residue left on the desert floor after the plutonium-based Trinity nuclear bomb test on July 16, 1945, near Alamogordo, New Mexico. The glass is primarily composed of arkosic sa ...
, a glass-like substance formed from fused sand and copper transmission lines. Identified in 2021, they are the oldest known anthropogenic quasicrystals. In 1961, Hao Wang asked whether determining if a set of tiles admits a tiling of the plane is an algorithmically unsolvable problem or not. He conjectured that it is solvable, relying on the hypothesis that every set of tiles that can tile the plane can do it ''periodically'' (hence, it would suffice to try to tile bigger and bigger patterns until obtaining one that tiles periodically). Nevertheless, two years later, his student Robert Berger constructed a set of some 20,000 square tiles (now called " Wang tiles") that can tile the plane but not in a periodic fashion. As further aperiodic sets of tiles were discovered, sets with fewer and fewer shapes were found. In 1976
Roger Penrose Sir Roger Penrose (born 8 August 1931) is an English mathematician, mathematical physicist, philosopher of science and Nobel Laureate in Physics. He is Emeritus Rouse Ball Professor of Mathematics in the University of Oxford, an emeritus f ...
discovered a set of just two tiles, now referred to as Penrose tiles, that produced only non-periodic tilings of the plane. These tilings displayed instances of fivefold symmetry. One year later Alan Mackay showed experimentally that the diffraction pattern from the Penrose tiling had a two-dimensional
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
consisting of sharp ' delta' peaks arranged in a fivefold symmetric pattern. Around the same time,
Robert Ammann Robert Ammann (October 1, 1946 – May, 1994) was an amateur mathematician who made several significant and groundbreaking contributions to the theory of quasicrystals and aperiodic tilings. Ammann attended Brandeis University, but generally did ...
created a set of aperiodic tiles that produced eightfold symmetry. In 1972 de Wolf and van Aalst reported that the diffraction pattern produced by a crystal of
sodium carbonate Sodium carbonate, , (also known as washing soda, soda ash and soda crystals) is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield moderately alkaline solutions ...
cannot be labeled with three indices but needed one more, which implied that the underlying structure had four dimensions in
reciprocal space In physics, the reciprocal lattice represents the Fourier transform of another lattice (usually a Bravais lattice). In normal usage, the initial lattice (whose transform is represented by the reciprocal lattice) is usually a periodic spatial fu ...
. Other puzzling cases have been reported, but until the concept of quasicrystal came to be established, they were explained away or denied. Shechtman first observed ten-fold
electron diffraction Electron diffraction refers to the bending of electron beams around atomic structures. This behaviour, typical for waves, is applicable to electrons due to the wave–particle duality stating that electrons behave as both particles and waves. S ...
patterns in 1982, while conducting a routine study of an
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
manganese Manganese is a chemical element with the Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of ...
alloy, Al6Mn, at the US
National Bureau of Standards The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical sci ...
(later NIST). Shechtman related his observation to Ilan Blech, who responded that such diffractions had been seen before. Around that time, Shechtman also related his finding to
John W. Cahn John Werner Cahn (January 9, 1928 – March 14, 2016) was an American scientist and recipient of the 1998 National Medal of Science. Born in Cologne, Weimar Germany, he was a professor in the department of metallurgy at the Massachusetts Institu ...
of the NIST, who did not offer any explanation and challenged him to solve the observation. Shechtman quoted Cahn as saying: "Danny, this material is telling us something, and I challenge you to find out what it is". The observation of the ten-fold diffraction pattern lay unexplained for two years until the spring of 1984, when Blech asked Shechtman to show him his results again. A quick study of Shechtman's results showed that the common explanation for a ten-fold symmetrical diffraction pattern, a type of
crystal twinning Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly ...
, was ruled out by his experiments. Therefore, Blech looked for a new structure containing cells connected to each other by defined angles and distances but without translational periodicity. He decided to use a computer simulation to calculate the diffraction intensity from a cluster of such a material, which he termed as "multiple polyhedral", and found a ten-fold structure similar to what was observed. The multiple polyhedral structure was termed later by many researchers as icosahedral glass. Shechtman accepted Blech's discovery of a new type of material and chose to publish his observation in a paper entitled "The Microstructure of Rapidly Solidified Al6Mn", which was written around June 1984 and published in a 1985 edition of '' Metallurgical Transactions A''. Meanwhile, on seeing the draft of the paper, John Cahn suggested that Shechtman's experimental results merit a fast publication in a more appropriate scientific journal. Shechtman agreed and, in hindsight, called this fast publication "a winning move”. This paper, published in the ''
Physical Review Letters ''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. As also confirmed by various measurement standards, which include the ''Journa ...
'', repeated Shechtman's observation and used the same illustrations as the original paper. Originally, the new form of matter was dubbed "Shechtmanite". The term "quasicrystal" was first used in print by Steinhardt and
Levine Levine (French transliteration from Russian) / Levin (surname), Levin (English transliteration from Russian Левин) is a common Jewish language, Jewish (Ashkenazi Jewish) surname. Levinsky is a variation with the same meaning (see French version ...
shortly after Shechtman's paper was published. Also in 1985, Ishimasa ''et al.'' reported twelvefold symmetry in Ni-Cr particles. Soon, eightfold diffraction patterns were recorded in V-Ni-Si and Cr-Ni-Si alloys. Over the years, hundreds of quasicrystals with various compositions and different symmetries have been discovered. The first quasicrystalline materials were thermodynamically unstable—when heated, they formed regular crystals. However, in 1987, the first of many stable quasicrystals were discovered, making it possible to produce large samples for study and applications. In 1992, the
International Union of Crystallography The International Union of Crystallography (IUCr) is an organisation devoted to the international promotion and coordination of the science of crystallography. The IUCr is a member of the International Council for Science (ICSU). Objectives T ...
altered its definition of a crystal, reducing it to the ability to produce a clear-cut diffraction pattern and acknowledging the possibility of the ordering to be either periodic or aperiodic. In 2001, Paul Steinhardt of
Princeton University Princeton University is a private research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the ...
hypothesized that quasicrystals could exist in nature and developed a method of recognition, inviting all the mineralogical collections of the world to identify any badly cataloged crystals. In 2007 Steinhardt received a reply by Luca Bindi, who found a quasicrystalline specimen from
Khatyrka Khatyrka (russian: Хатырка; ckt, Ватыркан, ''Vatyrkan'') is a rural locality (a '' selo'') in Anadyrsky District of Chukotka Autonomous Okrug, Russia,Directive #617-rp located on the shore of the Bering Sea southwest of Beringovsk ...
in the
University of Florence The University of Florence (Italian: ''Università degli Studi di Firenze'', UniFI) is an Italian public research university located in Florence, Italy. It comprises 12 schools and has around 50,000 students enrolled. History The first universi ...
Mineralogical Collection. The crystal samples were sent to Princeton University for other tests, and in late 2009, Steinhardt confirmed its quasicrystalline character. This quasicrystal, with a composition of Al63Cu24Fe13, was named icosahedrite and it was approved by the
International Mineralogical Association Founded in 1958, the International Mineralogical Association (IMA) is an international group of 40 national societies. The goal is to promote the science of mineralogy and to standardize the nomenclature of the 5000 plus known mineral species. Th ...
in 2010. Analysis indicates it may be meteoritic in origin, possibly delivered from a carbonaceous chondrite asteroid. In 2011, Bindi, Steinhardt, and a team of specialists found more icosahedrite samples from Khatyrka. A further study of Khatyrka meteorites revealed micron-sized grains of another natural quasicrystal, which has a ten-fold symmetry and a chemical formula of Al71Ni24Fe5. This quasicrystal is stable in a narrow temperature range, from 1120 to 1200 K at ambient pressure, which suggests that natural quasicrystals are formed by rapid quenching of a meteorite heated during an impact-induced shock. Shechtman was awarded the
Nobel Prize in Chemistry ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then "M ...
in 2011 for his work on quasicrystals. "His discovery of quasicrystals revealed a new principle for packing of atoms and molecules," stated the Nobel Committee and pointed that "this led to a paradigm shift within chemistry." In 2014, Post of Israel issued a stamp dedicated to quasicrystals and the 2011 Nobel Prize. While the first quasicrystals discovered were made out of intmetallic components, later on quasicrystals were also discovered in soft-matter and
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
systems. Soft quasicrystal structures have been found in supramolecular dendrimer liquids and ABC Star Polymers in 2004 and 2007. In 2009, it was found that thin-film quasicrystals can be formed by
self-assembly Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
of uniformly shaped, nano-sized molecular units at an air-liquid interface. It was demonstrated that these units can be both organic and organic. Additionally in the 2010s, two-dimensional molecular quasicrystals were discovered, driven by intermolecular interactions and interface-interactions. In 2018, chemists from Brown University announced the successful creation of a self-constructing lattice structure based on a strangely shaped quantum dot. While single-component quasicrystal lattices have been previously predicted mathematically and in computer simulations, they had not been demonstrated prior to this.


Mathematics

There are several ways to mathematically define quasicrystalline patterns. One definition, the "cut and project" construction, is based on the work of
Harald Bohr Harald August Bohr (22 April 1887 – 22 January 1951) was a Danish mathematician and footballer. After receiving his doctorate in 1910, Bohr became an eminent mathematician, founding the field of almost periodic functions. His brother was the ...
(mathematician brother of
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
). The concept of an almost periodic function (also called a quasiperiodic function) was studied by Bohr, including work of Bohl and Escanglon. He introduced the notion of a superspace. Bohr showed that quasiperiodic functions arise as restrictions of high-dimensional periodic functions to an irrational slice (an intersection with one or more
hyperplane In geometry, a hyperplane is a subspace whose dimension is one less than that of its '' ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyper ...
s), and discussed their Fourier point spectrum. These functions are not exactly periodic, but they are arbitrarily close in some sense, as well as being a projection of an exactly periodic function. In order that the quasicrystal itself be aperiodic, this slice must avoid any lattice plane of the higher-dimensional lattice.
De Bruijn De Bruijn is a Dutch surname meaning "the brown". Notable people with the surname include: * (1887–1968), Dutch politician * Brian de Bruijn (b. 1954), Dutch-Canadian ice hockey player * Chantal de Bruijn (b. 1976), Dutch field hockey defender ...
showed that Penrose tilings can be viewed as two-dimensional slices of five-dimensional hypercubic structures; similarly, icosahedral quasicrystals in three dimensions are projected from a six-dimensional hypercubic lattice, as first described by Peter Kramer and Roberto Neri in 1984. Equivalently, the
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed ...
of such a quasicrystal is nonzero only at a dense set of points spanned by integer multiples of a finite set of
basis vectors In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as componen ...
, which are the projections of the primitive
reciprocal lattice In physics, the reciprocal lattice represents the Fourier transform of another lattice (group) (usually a Bravais lattice). In normal usage, the initial lattice (whose transform is represented by the reciprocal lattice) is a periodic spatial fu ...
vectors of the higher-dimensional lattice. Classical theory of crystals reduces crystals to point lattices where each point is the center of mass of one of the identical units of the crystal. The structure of crystals can be analyzed by defining an associated
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
. Quasicrystals, on the other hand, are composed of more than one type of unit, so, instead of lattices, quasilattices must be used. Instead of groups, groupoids, the mathematical generalization of groups in
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, ca ...
, is the appropriate tool for studying quasicrystals. Using mathematics for construction and analysis of quasicrystal structures is a difficult task for most experimentalists. Computer modeling, based on the existing theories of quasicrystals, however, greatly facilitated this task. Advanced programs have been developed allowing one to construct, visualize and analyze quasicrystal structures and their diffraction patterns. The aperiodic nature of quasicrystals can also make theoretical studies of physical properties, such as electronic structure, difficult due to the inapplicability of
Bloch's theorem In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential take the form of a plane wave modulated by a periodic function. The theorem is named after the physicist Felix Bloch, who d ...
. However, spectra of quasicrystals can still be computed with error control. Study of quasicrystals may shed light on the most basic notions related to the quantum critical point observed in heavy fermion metals. Experimental measurements on an Au-Al- Yb quasicrystal have revealed a quantum critical point defining the divergence of the
magnetic susceptibility In electromagnetism, the magnetic susceptibility (Latin: , "receptive"; denoted ) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization (magnetic moment per unit volume) to the ap ...
as temperature tends to zero. It is suggested that the electronic system of some quasicrystals is located at a quantum critical point without tuning, while quasicrystals exhibit the typical scaling behaviour of their
thermodynamic properties In thermodynamics, a physical property is any property that is measurable, and whose value describes a state of a physical system. Thermodynamic properties are defined as characteristic features of a system, capable of specifying the system's stat ...
and belong to the well-known family of heavy fermion metals.


Materials science

Since the original discovery by
Dan Shechtman Dan Shechtman ( he, דן שכטמן; born January 24, 1941)Dan Shechtman
. (PDF). Retri ...
, hundreds of quasicrystals have been reported and confirmed. Quasicrystals are found most often in aluminium alloys (Al-Li-Cu, Al-Mn-Si, Al-Ni-Co, Al-Pd-Mn, Al-Cu-Fe, Al-Cu-V, etc.), but numerous other compositions are also known (Cd-Yb, Ti-Zr-Ni, Zn-Mg-Ho, Zn-Mg-Sc, In-Ag-Yb, Pd-U-Si, etc.). Two types of quasicrystals are known. The first type, polygonal (dihedral) quasicrystals, have an axis of 8, 10, or 12-fold local symmetry (octagonal, decagonal, or dodecagonal quasicrystals, respectively). They are periodic along this axis and quasiperiodic in planes normal to it. The second type, icosahedral quasicrystals, are aperiodic in all directions. Icosahedral quasicrystals have a three dimensional quasiperiodic structure and possess fifteen 2-fold, ten 3-fold and six 5-fold axes in accordance with their icosahedral symmetry. Quasicrystals fall into three groups of different thermal stability: *Stable quasicrystals grown by slow cooling or
casting Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a ''casting'', which is ejecte ...
with subsequent annealing, *Metastable quasicrystals prepared by
melt spinning Melt spinning is a metal forming technique that is typically used to form thin ribbons of metal or alloys with a particular atomic structure. Some important commercial applications of melt spun metals include high-efficiency transformers (Amorp ...
, and *Metastable quasicrystals formed by the
crystallization Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposi ...
of the
amorphous In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek language, Gr ...
phase. Except for the Al–Li–Cu system, all the stable quasicrystals are almost free of defects and disorder, as evidenced by
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
and
electron diffraction Electron diffraction refers to the bending of electron beams around atomic structures. This behaviour, typical for waves, is applicable to electrons due to the wave–particle duality stating that electrons behave as both particles and waves. S ...
revealing peak widths as sharp as those of perfect crystals such as Si. Diffraction patterns exhibit fivefold, threefold, and twofold symmetries, and reflections are arranged quasiperiodically in three dimensions. The origin of the stabilization mechanism is different for the stable and metastable quasicrystals. Nevertheless, there is a common feature observed in most quasicrystal-forming liquid alloys or their undercooled liquids: a local icosahedral order. The icosahedral order is in equilibrium in the ''liquid state'' for the stable quasicrystals, whereas the icosahedral order prevails in the ''undercooled liquid state'' for the metastable quasicrystals. A nanoscale icosahedral phase was formed in Zr-, Cu- and Hf-based bulk metallic glasses alloyed with noble metals. Most quasicrystals have ceramic-like properties including high thermal and electrical resistance, hardness and brittleness, resistance to corrosion, and non-stick properties. Many metallic quasicrystalline substances are impractical for most applications due to their thermal instability; the Al-Cu-Fe ternary system and the Al-Cu-Fe-Cr and Al-Co-Fe-Cr quaternary systems, thermally stable up to 700 °C, are notable exceptions. The quasi-ordered droplet crystals could be formed under Dipolar forces in the Bose Einstein condensate. While the softcore Rydberg dressing interaction has forms triangular droplet-crystals, adding a Gaussian peak to the plateau type interaction would form multiple roton unstable points in the Bogoliubov spectrum. Therefore, the excitation around the roton instabilities would grow exponentially and form multiple allowed lattice constants leading to quasi-ordered periodic droplet crystals.


Applications

Quasicrystalline substances have potential applications in several forms. Metallic quasicrystalline coatings can be applied by
Thermal spraying Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The "feedstock" (coating precursor) is heated by electrical (plasma or arc) or chemical means (combustion flame). Thermal sprayi ...
or magnetron sputtering. A problem that must be resolved is the tendency for cracking due to the materials' extreme brittleness. The cracking could be suppressed by reducing sample dimensions or coating thickness. Recent studies show typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains at room temperature and sub-micrometer scales (<500 nm). An application was the use of low-friction Al-Cu-Fe-Cr quasicrystals as a coating for
frying pan A frying pan, frypan, or skillet is a flat-bottomed pan used for frying, searing, and browning foods. It is typically in diameter with relatively low sides that flare outwards, a long handle, and no lid. Larger pans may have a small grab han ...
s. Food did not stick to it as much as to
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's r ...
making the pan moderately
non-stick A non-stick surface is engineered to reduce the ability of other materials to stick to it. Non-stick cookware is a common application, where the non-stick coating allows food to brown without sticking to the pan. Non-stick is often used to refer ...
and easy to clean; heat transfer and durability were better than
PTFE Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene that has numerous applications. It is one of the best-known and widely applied PFAS. The commonly known brand name of PTFE-based composition is Teflon by Chem ...
non-stick cookware and the pan was free from
perfluorooctanoic acid Perfluorooctanoic acid (PFOA; conjugate base perfluorooctanoate; also known colloquially as C8, for its 8 carbon chain structure) is a perfluorinated carboxylic acid produced and used worldwide as an industrial surfactant in chemical processes a ...
(PFOA); the surface was very hard, claimed to be ten times harder than stainless steel, and not harmed by metal utensils or cleaning in a
dishwasher A dishwasher is a machine that is used to clean dishware, cookware, and cutlery automatically. Unlike manual dishwashing, which relies heavily on physical scrubbing to remove soiling, the mechanical dishwasher cleans by spraying hot water, ty ...
; and the pan could withstand temperatures of without harm. However, cooking with a lot of salt would etch the quasicrystalline coating used, and the pans were eventually withdrawn from production. Shechtman had one of these pans. The Nobel citation said that quasicrystals, while brittle, could reinforce steel "like armor". When Shechtman was asked about potential applications of quasicrystals he said that a precipitation-hardened stainless steel is produced that is strengthened by small quasicrystalline particles. It does not corrode and is extremely strong, suitable for razor blades and surgery instruments. The small quasicrystalline particles impede the motion of dislocation in the material. Quasicrystals were also being used to develop heat insulation, LEDs, diesel engines, and new materials that convert heat to electricity. Shechtman suggested new applications taking advantage of the low coefficient of friction and the hardness of some quasicrystalline materials, for example embedding particles in plastic to make strong, hard-wearing, low-friction plastic gears. The low heat conductivity of some quasicrystals makes them good for heat insulating coatings. One of the special properties of quasicrystals is their smooth surface, which despite the irregular atomic structure, the surface of quasicrystals can be smooth and flat. Other potential applications include selective solar absorbers for power conversion, broad-wavelength reflectors, and bone repair and prostheses applications where biocompatibility, low friction and corrosion resistance are required. Magnetron sputtering can be readily applied to other stable quasicrystalline alloys such as Al-Pd-Mn.


See also

*
Archimedean solid In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the convex uniform polyhedra composed of regular polygons meeting in identical vertices, excluding the five Platonic solids (which are compose ...
*
Crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics ( condensed matter physics). The wor ...
*
Disordered hyperuniformity Hyperuniform materials are mixed-component many-particle systems with unusually low fluctuations in component density at large scales, when compared to the distribution of constituents in common disordered systems, like a mixed ideal gas (air) o ...
* Fibonacci quasicrystal * Phason *
Tessellation A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called ''tiles'', with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of ...
*
Time crystal In condensed matter physics, a time crystal is a quantum system of particles whose lowest-energy state is one in which the particles are in repetitive motion. The system cannot lose energy to the environment and come to rest because it is alrea ...
* Icosahedral twins


References


External links


A Partial Bibliography of Literature on Quasicrystals
(1996–2008).
BBC webpage
showing pictures of Quasicrystals
What is... a Quasicrystal?
''
Notices of the AMS ''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except for the combined June/July issue. The first volume appeared in 1953. Each issue of the magazine since ...
'' 2006, Volume 53, Number 8
Gateways towards quasicrystals: a short history by P. KramerSteinhardt's proposalQuasicrystal Research – Documentary 2011 on the research of the University of Stuttgart
*
"Indiana Steinhardt and the Quest for Quasicrystals – A Conversation with Paul Steinhardt"
, ''Ideas Roadshow'', 2016 * {{Patterns in nature Crystallography Condensed matter physics Tessellation