HOME

TheInfoList



OR:

In mathematics, specifically in
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ' ...
, a prime element of a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
is an object satisfying certain properties similar to the
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s in the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language o ...
s and to
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted ...
s. Care should be taken to distinguish prime elements from
irreducible element In algebra, an irreducible element of a domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. Relationship with prime elements Irreducible elements should not be confus ...
s, a concept which is the same in UFDs but not the same in general.


Definition

An element of a commutative ring is said to be prime if it is not the
zero element In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive identi ...
or a
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (a ...
and whenever
divides In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
for some and in , then divides or divides . With this definition,
Euclid's lemma In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers, namely: For example, if , , , then , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as we ...
is the assertion that
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s are prime elements in the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often den ...
. Equivalently, an element is prime if, and only if, the
principal ideal In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
generated by is a nonzero
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together wi ...
. (Note that in an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural se ...
, the ideal is a
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together wi ...
, but is an exception in the definition of 'prime element'.) Interest in prime elements comes from the
fundamental theorem of arithmetic In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the ord ...
, which asserts that each nonzero integer can be written in essentially only one way as 1 or −1 multiplied by a product of positive prime numbers. This led to the study of
unique factorization domain In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is ...
s, which generalize what was just illustrated in the integers. Being prime is relative to which ring an element is considered to be in; for example, 2 is a prime element in but it is not in , the ring of
Gaussian integers In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...
, since and 2 does not divide any factor on the right.


Connection with prime ideals

An ideal in the ring (with unity) is
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
if the factor ring is an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural se ...
. In an integral domain, a nonzero
principal ideal In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
is
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
if and only if it is generated by a prime element.


Irreducible elements

Prime elements should not be confused with
irreducible element In algebra, an irreducible element of a domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. Relationship with prime elements Irreducible elements should not be confus ...
s. In an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural se ...
, every prime is irreducible but the converse is not true in general. However, in unique factorization domains, or more generally in
GCD domain In mathematics, a GCD domain is an integral domain ''R'' with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalentl ...
s, primes and irreducibles are the same.


Examples

The following are examples of prime elements in rings: * The integers , , , , , ... in the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often den ...
* the complex numbers , , and in the ring of
Gaussian integers In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as \mathbf /ma ...
* the polynomials and in , the
ring of polynomials In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variabl ...
over . * 2 in the
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. I ...
* is prime but not irreducible in the ring * In the ring of pairs of integers, is prime but not irreducible (one has ). * In the
ring of algebraic integers In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
\mathbf Z
sqrt In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . E ...
the element is irreducible but not prime (as 3 divides 9=(2+\sqrt)(2-\sqrt) and 3 does not divide any factor on the right).


References

;Notes ;Sources *Section III.3 of * *{{citation , author=Kaplansky, Irving , title=Commutative rings , publisher=Allyn and Bacon Inc. , place=Boston, Mass. , year=1970 , pages=x+180 , mr=0254021 Ring theory