HOME

TheInfoList



OR:

In fiber optics, polarization-maintaining optical fiber (PMF or PM fiber) is a single-mode
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a mea ...
in which linearly polarized
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
, if properly launched into the fiber, maintains a linear polarization during
propagation Propagation can refer to: * Chain propagation in a chemical reaction mechanism *Crack propagation, the growth of a crack during the fracture of materials * Propaganda, non-objective information used to further an agenda * Reproduction, and other fo ...
, exiting the fiber in a specific linear polarization state; there is little or no cross-coupling of optical
power Power most often refers to: * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power * Power (social and political), the ability to influence people or events ** Abusive power Power may a ...
between the two polarization
mode Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
s. Such fiber is used in special applications where preserving polarization is essential.


Polarization crosstalk

In an ordinary (non-polarization-maintaining) fiber, two polarization modes (say vertical and horizontal polarization) have the same nominal phase velocity due to the fiber's circular symmetry. However tiny amounts of random birefringence in such a fiber, or bending in the fiber, will cause a tiny amount of crosstalk from the vertical to the horizontal polarization mode. And since even a short portion of fiber, over which a tiny coupling coefficient may apply, is many thousands of wavelengths long, even that small coupling between the two polarization modes, applied coherently, can lead to a large power transfer to the horizontal mode, completely changing the wave's net state of polarization. Since that coupling coefficient was unintended and a result of arbitrary stress or bending applied to fiber, the output state of polarization will itself be random, and will vary as those stresses or bends vary; it will also vary with wavelength.


Principle of operation

Polarization-maintaining fibers work by ''intentionally'' introducing a systematic linear birefringence in the fiber, so that there are two well defined polarization modes which propagate along the fiber with very distinct phase velocities. The beat length Lb of such a fiber (for a particular wavelength) is the distance (typically a few millimeters) over which the wave in one mode will experience an additional delay of one wavelength compared to the other polarization mode. Thus a length Lb /2 of such fiber is equivalent to a half-wave plate. Now consider that there might be a random coupling between the two polarization states over a significant length of such fiber. At point 0 along the fiber, the wave in polarization mode 1 induces an amplitude into mode 2 at some phase. However at point 1/2 Lb along the fiber, the same coupling coefficient between the polarization modes induces an amplitude into mode 2 which is now 180 degrees ''out of phase'' with the wave coupled at point zero, leading to cancellation. At point Lb along the fiber the coupling is again in the original phase, but at 3/2 Lb it is again out of phase and so on. The possibility of coherent addition of wave amplitudes through crosstalk over distances much larger than Lb is thus eliminated. Most of the wave's power remains in the original polarization mode, and exits the fiber in that mode's polarization as it is oriented at the fiber end.
Optical fiber connector An optical fiber connector joins optical fibers, and enables quicker connection and disconnection than splicing. The connectors mechanically couple and align the cores of fibers so light can pass. Better connectors lose very little light due ...
s used for PM fibers are specially keyed so that the two polarization modes are aligned and exit in a specific orientation. Note that a polarization-maintaining fiber does not polarize light as a polarizer does. Rather, PM fiber maintains the linear polarization of linearly polarized light provided that it is launched into the fiber aligned with one of the fiber's polarization modes. Launching linearly polarized light into the fiber at a different angle will excite both polarization modes, conducting the same wave at slightly different phase velocities. At most points along the fiber the net polarization will be an
elliptically polarized In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An elli ...
state, with a return to the original polarization state after an integer number of beat lengths. Consequently, if visible laser light is launched into the fiber exciting both polarization modes, scattering of propagating light viewed from the side, is observed with a light and dark pattern periodic over each beat length, since scattering is preferentially perpendicular to the polarization direction.


Designs

Several different designs are used to create birefringence in a fiber. The fiber may be geometrically asymmetric or have a refractive index profile which is asymmetric such as the design using an elliptical
cladding Cladding is an outer layer of material covering another. It may refer to the following: *Cladding (boiler), the layer of insulation and outer wrapping around a boiler shell *Cladding (construction), materials applied to the exterior of buildings ...
as shown in the diagram. Alternatively,
stress Stress may refer to: Science and medicine * Stress (biology), an organism's response to a stressor such as an environmental condition * Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
permanently induced in the fiber will produce stress birefringence; this may be accomplished using rods of another material included within the cladding. Several different shapes of rod are used, and the resulting fiber is sold under brand names such as "PANDA" and "Bow-tie". ("PANDA" refers to the resemblance of the fiber's cross-section to the face of a
panda The giant panda (''Ailuropoda melanoleuca''), also known as the panda bear (or simply the panda), is a bear species endemic to China. It is characterised by its bold black-and-white coat and rotund body. The name "giant panda" is sometimes use ...
, and is also an acronym for "Polarization-maintaining AND Absorption-reducing".) It is possible to create a circularly birefringent optical fiber just using an ordinary (circularly symmetric) single-mode fiber and twisting it, thus creating internal torsional stress. That causes the phase velocity of right and left hand circular polarizations to significantly differ. Thus the two circular polarizations propagate with little crosstalk in between them


Applications

Polarization-maintaining optical fibers are used in special applications, such as in fiber optic sensing, interferometry and
quantum key distribution Quantum key distribution (QKD) is a secure communication method which implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which can then b ...
. They are also commonly used in
telecommunication Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that fe ...
s for the connection between a source
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fi ...
and a
modulator In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the ''carrier signal'', with a separate signal called the ''modulation signal'' that typically contains informatio ...
, since the modulator requires polarized light as input. They are rarely used for long-distance transmission, because PM fiber is expensive and has higher
attenuation In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variabl ...
than
singlemode fiber In fiber-optic communication, a single-mode optical fiber (SMF), also known as fundamental- or mono-mode, is an optical fiber designed to carry only a single mode of light - the transverse mode. Modes are the possible solutions of the Helmhol ...
. Another important application is fiber-optic gyroscopes, which are widely used in the aerospace industry. The output of a PM fiber is typically characterized by its polarization extinction ratio (PER)—the ratio of correctly to incorrectly polarized light, expressed in decibels. The quality of PM patchcords and
pigtail A woman with long pigtails and braids. In the context of hairstyles, the usage of the term pigtail (or twin tail or twintail) shows considerable variation. The term may refer to a single braid, but is more frequently used in the plural ("pi ...
s can be characterized with a PER meter. Good PM fibers have extinction ratios in excess of 20 dB.


References

*{{FS1037C *MIL-STD-2196


External links


Fujikura's PANDA Fiber
Specs for the most common type of PM fiber
Polarization Crosstalk in PM Fiber
Optical fiber