HOME

TheInfoList



OR:

Piston effect refers to the
forced-air A forced-air central heating system is one which uses air as its heat transfer medium. These systems rely on ductwork, vents, and plenums as means of air distribution, separate from the actual heating and air conditioning systems. The return ...
flow inside a
tunnel A tunnel is an underground passageway, dug through surrounding soil, earth or rock, and enclosed except for the entrance and exit, commonly at each end. A pipeline is not a tunnel, though some recent tunnels have used immersed tube cons ...
or shaft caused by moving vehicles. It is one of numerous phenomena that engineers and designers must consider when developing a range of structures.


Cause

In open air, when a vehicle travels along, air pushed aside can move in any direction except into the ground. Inside a tunnel, air is confined by the tunnel walls to move along the tunnel. Behind the moving vehicle, as air has been pushed away, suction is created, and air is pulled to flow into the tunnel. In addition, because of fluid viscosity, the surface of the vehicle drags the air to flow with vehicle, a force experienced as skin drag by the vehicle. This movement of air by the vehicle is analogous to the operation of a mechanical
piston A piston is a component of reciprocating engines, reciprocating pumps, gas compressors, hydraulic cylinders and pneumatic cylinders, among other similar mechanisms. It is the moving component that is contained by a cylinder and is made gas-t ...
as inside a
reciprocating compressor A reciprocating compressor or piston compressor is a positive-displacement compressor that uses pistons driven by a crankshaft to deliver gases at high pressure. Pressures of up to 5,000 PSIG are commonly produced by multistage reciprocating c ...
gas pump, hence the name "piston effect". The effect is also similar to the pressure fluctuations inside drainage pipes as waste water pushes air in front of it. The piston effect is very pronounced in railway tunnels, because the cross sectional area of trains is large and in many cases almost completely fills the tunnel cross section. The wind felt by the passengers on underground railway platforms (that do not have
platform screen doors Platform screen doors (PSDs), also known as platform edge doors (PEDs), are used at some train, rapid transit and people mover stations to separate the platform from train tracks, as well as on some bus rapid transit, tram and light rail sys ...
installed) when a train is approaching is air flow from the piston effect. The effect is less pronounced in road vehicle tunnels, as the cross-sectional area of vehicle is small compared to the total cross-sectional area of the tunnel. Single track tunnels experience the maximum effect but clearance between rolling stock and the tunnel as well as the shape of the front of the train affect its strength. Air flow caused by the piston effect can exert large forces on the installations inside the tunnel and so these installations have to be carefully designed and installed properly. Non-return dampers are sometimes needed to prevent stalling of ventilation fans caused by this air flow.


Applications

The piston effect has to be considered by building designers in relation to smoke movement within an
elevator An elevator or lift is a cable-assisted, hydraulic cylinder-assisted, or roller-track assisted machine that vertically transports people or freight between floors, levels, or decks of a building, vessel, or other structure. They ...
shaft. A moving elevator car forces the air in front of it out of the shaft and pulls air into the shaft behind it with the effect most apparent in elevator systems with a fast moving car in a single shaft. This means that in a fire a moving elevator may push smoke into lower floors. The piston effect is used in tunnel ventilation. In railway tunnels, the train pushes out the air in front of it toward the closest ventilation shaft in front, and sucks air into the tunnel from the closest ventilation shaft behind it. The piston effect can also assist ventilation in road vehicle tunnels. In underground rapid transit systems, the piston effect contributes to ventilation and in some cases provides enough air movement to make mechanical ventilation unnecessary. At wider stations with multiple tracks, air quality remains the same and can even improve when mechanical ventilation is disabled. At narrow platforms with a single tunnel, however, air quality worsens when relying on the piston effect alone for ventilation. This still allows for potential energy savings by taking advantage of the piston effect rather than mechanical ventilation where possible.


Tunnel boom

Tunnel boom is a loud boom sometimes generated by high-speed trains when they enter tunnels. These
shock wave In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a me ...
s can disturb nearby residents and damage trains and nearby structures. People perceive this sound similarly to that of a
sonic boom A sonic boom is a sound associated with shock waves created when an object travels through the air faster than the speed of sound. Sonic booms generate enormous amounts of sound energy, sounding similar to an explosion or a thunderclap to ...
from supersonic aircraft. However, unlike a sonic boom, tunnel boom is not caused by trains exceeding the speed of sound. Instead, tunnel boom results from the structure of the tunnel preventing the air around the train from escaping in all directions. As a train passes through a tunnel, it creates
compression wave Longitudinal waves are waves in which the vibration of the medium is parallel ("along") to the direction the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation. Mechanical longitudinal waves ...
s in front of it. These waves coalesce into a
shock wave In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a me ...
that generates a loud boom when it reaches the tunnel exit. The strength of this wave is proportional to the cube of the train's speed, so the effect is much more pronounced with faster trains. Tunnel boom can disturb residents near the mouths of tunnels, and it is exacerbated in mountain valleys where the sound echoes. Reducing these disturbances is a significant challenge for high-speed lines such as Japan's
Shinkansen The , colloquially known in English as the bullet train, is a network of high-speed railway lines in Japan. Initially, it was built to connect distant Japanese regions with Tokyo, the capital, to aid economic growth and development. Beyond l ...
, French
TGV The TGV (french: Train à Grande Vitesse, "high-speed train"; previously french: TurboTrain à Grande Vitesse, label=none) is France's intercity high-speed rail service, operated by SNCF. SNCF worked on a high-speed rail network from 1966 to 19 ...
and Spain's
AVE ''Alta Velocidad Española'' (''AVE'') is a service of high-speed rail in Spain operated by Renfe, the Spanish national railway company, at speeds of up to . As of December 2021, the Spanish high-speed rail network, on part of which the AVE s ...
. Tunnel boom has become a principal limitation to increased train speeds in Japan where the mountainous terrain requires frequent tunnels. Japan has enacted a law limiting noise to 70 dB in residential areas, which include many tunnel exit zones. Methods of reducing tunnel boom include making the train's profile highly
aerodynamic Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dyn ...
, adding hoods to tunnel entrances, installing perforated walls at tunnel exits, and drilling vent holes in the tunnel (similar to fitting a silencer on a firearm, but on a far bigger scale).


Ear discomfort

Passengers and crew may experience ear discomfort as a train enters a tunnel because of rapid pressure changes.


See also

*
Plumbing drainage venting In modern plumbing, a drain-waste-vent (or DWV) is a system that allows air to enter the plumbing system to maintain proper air pressure to enable the removal of sewage and greywater from a dwelling. Drain refers to water produced at fixtures s ...


Footnotes


References

* * Pistone


External links

* {{YouTube, id=Cnue32gRLf0, title=Piston Effect Simulation
Tunnel Boom by an AVE train in Buñol, Spain

Enhancing the piston effect in underground railway tunnels

Piston Effect Simulation Using Ansys CFX
Railway tunnels Tunnels Physical phenomena