HOME

TheInfoList



OR:

Peripheral chemoreceptors (of the
carotid In anatomy, the left and right common carotid arteries (carotids) (Entry "carotid"
in
aortic bodies The aortic bodies are one of several small clusters of peripheral chemoreceptors located along the aortic arch. They are important in measuring partial pressures of oxygen and carbon dioxide in the blood, and blood pH. Structure The aortic bodies ...
) are so named because they are sensory extensions of the
peripheral nervous system The peripheral nervous system (PNS) is one of two components that make up the nervous system of bilateral animals, with the other part being the central nervous system (CNS). The PNS consists of nerves and ganglia, which lie outside the brai ...
into
blood vessels The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away f ...
where they detect changes in chemical concentrations. As transducers of patterns of variability in the surrounding environment, carotid and aortic bodies count as chemosensors in a similar way as taste buds and photoreceptors. However, because carotid and aortic bodies detect variation within the body's internal organs, they are considered interoceptors. Taste buds, olfactory bulbs, photoreceptors, and other receptors associated with the five traditional sensory modalities, by contrast, are exteroceptors in that they respond to stimuli outside the body. The body also contains proprioceptors, which respond to the amount of stretch within the
organ Organ may refer to: Biology * Organ (biology), a part of an organism Musical instruments * Organ (music), a family of keyboard musical instruments characterized by sustained tone ** Electronic organ, an electronic keyboard instrument ** Hammond ...
, usually
muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of mus ...
, that they occupy. As for their particular function, peripheral chemoreceptors help maintain
homeostasis In biology, homeostasis ( British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
in the cardiorespiratory system by monitoring concentrations of blood borne chemicals. These polymodal sensors respond to variations in a number of blood properties, including low oxygen ( hypoxia), high carbon dioxide (
hypercapnia Hypercapnia (from the Greek ''hyper'' = "above" or "too much" and ''kapnos'' = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous p ...
), and low glucose (
hypoglycemia Hypoglycemia, also called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's triad is used to properly identify hypoglycemic episodes. It is defined as blood glucose bel ...
). Hypoxia and
hypercapnia Hypercapnia (from the Greek ''hyper'' = "above" or "too much" and ''kapnos'' = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous p ...
are the most heavily studied and understood conditions detected by the peripheral chemoreceptors.
Glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
is discussed in a later section. Afferent nerves carry signals back from the carotid and aortic bodies to the
brainstem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is ...
, which responds accordingly (e.g. increasing ventilation).


Structure

Both carotid bodies and
aortic bodies The aortic bodies are one of several small clusters of peripheral chemoreceptors located along the aortic arch. They are important in measuring partial pressures of oxygen and carbon dioxide in the blood, and blood pH. Structure The aortic bodies ...
increase sensory discharge during hypoxia. Carotid bodies are considered the primary peripheral chemoreceptor and have been shown to contribute more to a hypoxic response. However, in the chronic absence of the carotid body, the aortic body is able to perform a similar respiratory regulatory role, suggesting that it possesses efficacious mechanisms of
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
as well. The differing locations of the two bodies ideally position them to take advantage of different information; the carotid bodies, located on one of the main
arteries An artery (plural arteries) () is a blood vessel in humans and most animals that takes blood away from the heart to one or more parts of the body (tissues, lungs, brain etc.). Most arteries carry oxygenated blood; the two exceptions are the pu ...
of the
neck The neck is the part of the body on many vertebrates that connects the head with the torso. The neck supports the weight of the head and protects the nerves that carry sensory and motor information from the brain down to the rest of the body. In ...
, monitor
partial pressure In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal g ...
within arterial vessels while aortic body, located on the
aortic arch The aortic arch, arch of the aorta, or transverse aortic arch () is the part of the aorta between the ascending and descending aorta. The arch travels backward, so that it ultimately runs to the left of the trachea. Structure The aorta begins ...
, monitors oxygen concentration closer to the
heart The heart is a muscular Organ (biology), organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as ca ...
. Each of these bodies is composed of a similar collection of cells, and it is the post-transduction
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
that differentiates their responses. However, little is known about the specifics of either of these signaling mechanisms.


Microanatomy

Carotid and aortic bodies are clusters of cells located on the
common carotid artery In anatomy, the left and right common carotid arteries (carotids) (Entry "carotid"
in
aortic arch The aortic arch, arch of the aorta, or transverse aortic arch () is the part of the aorta between the ascending and descending aorta. The arch travels backward, so that it ultimately runs to the left of the trachea. Structure The aorta begins ...
, respectively. Each of these peripheral chemoreceptors is composed of type I glomus cells and glia-like type II cells. The type-I cells transduce the signals from the bloodstream and are innervated by afferent nerve fibers leading back to (in the carotid body) the carotid sinus nerve and then on to the
glossopharyngeal nerve The glossopharyngeal nerve (), also known as the ninth cranial nerve, cranial nerve IX, or simply CN IX, is a cranial nerve that exits the brainstem from the sides of the upper medulla, just anterior (closer to the nose) to the vagus nerve. ...
and medulla of the
brainstem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is ...
. The aortic body, by contrast, is connected to the medulla via the
vagus nerve The vagus nerve, also known as the tenth cranial nerve, cranial nerve X, or simply CN X, is a cranial nerve that interfaces with the parasympathetic control of the heart, lungs, and digestive tract. It comprises two nerves—the left and righ ...
. They also receive input from efferent nerve fibers leading back to the same set of nerves. The entire cluster of cells is infiltrated with
capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
to provide access to the bloodstream; the high capillary density makes this one of the areas of the body with the greatest blood flow. Type I cells are densely packed with
vesicle Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry) In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form nat ...
s containing various neurotransmitters, including
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80% o ...
, ATP,
serotonin Serotonin () or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter. Its biological function is complex and multifaceted, modulating mood, cognition, reward, learning, memory, and numerous physiological processes such as vomiting and va ...
,
catecholamine A catecholamine (; abbreviated CA) is a monoamine neurotransmitter, an organic compound that has a catechol (benzene with two hydroxyl side groups next to each other) and a side-chain amine. Catechol can be either a free molecule or a su ...
, released during transduction. Type I cells are often connected via gap junctions, which might allow for quick communication between cells when transducing signals. Type II cells occur in a ratio of about 1 to 4 with type I cells. Their long bodies usually occur in close association with type I cells, though they do not entirely encase type I cells. They lack the vesicles of type I cells used in
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neu ...
communication, but studies indicate they function as chemoreceptor
stem cells In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of ...
and can respond to prolonged exposure to hypoxia by proliferating into type I cells themselves. They may also bolster rapid communication among type I cells by amplifying release of one of the primary neurotransmitters in chemoreceptive signaling, ATP.


Development

Sensitivity and
physiology Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemic ...
of the peripheral chemoreceptors changes throughout the lifespan. ''Infancy'' Respiration in neonates is very irregular, prone to periodic breathing and
apnea Apnea, BrE: apnoea, is the temporal cessation of breathing. During apnea, there is no movement of the muscles of inhalation, and the volume of the lungs initially remains unchanged. Depending on how blocked the airways are ( patency), there ma ...
. In utero and at birth, the carotid body's response to hypoxia is not fully developed; it takes a few days to a few weeks to increase its sensitivity to that of an adult carotid body. During this period of development, it is proposed that neonates heavily rely on other oxygen-sensing chemoreceptors, such as the aortic body or central chemoreceptors. However, non-carotid body chemoreceptors are sometimes not enough to ensure appropriate ventilatory response;
SIDS Sudden infant death syndrome (SIDS) is the sudden unexplained death of a child of less than one year of age. Diagnosis requires that the death remain unexplained even after a thorough autopsy and detailed death scene investigation. SIDS usua ...
deaths occur most frequently during the days or weeks in which the carotid body is still developing, and it is suggested that lack of appropriate carotid body activity is implicated in this condition. SIDS victims often are reported to have displayed some of the characteristic troubles in carotid body development, including periodic breathing, much
sleep apnea Sleep apnea, also spelled sleep apnoea, is a sleep disorder in which pauses in breathing or periods of shallow breathing during sleep occur more often than normal. Each pause can last for a few seconds to a few minutes and they happen many tim ...
, impaired
arousal Arousal is the physiological and psychological state of being awoken or of sense organs stimulated to a point of perception. It involves activation of the ascending reticular activating system (ARAS) in the brain, which mediates wakefulness, th ...
during sleep, and low sensitivity to hypoxia. The carotid bodies of SIDS victims also often display physiological abnormalities, such as hypo- and
hypertrophy Hypertrophy is the increase in the volume of an organ or tissue due to the enlargement of its component cells. It is distinguished from hyperplasia, in which the cells remain approximately the same size but increase in number.Updated by Linda J. ...
. Many of the findings on to carotid body's relation to SIDS report that carotid body development is impaired by environmental factors that were already known to increase the risk of SIDS, such as
premature birth Preterm birth, also known as premature birth, is the birth of a baby at fewer than 37 weeks gestational age, as opposed to full-term delivery at approximately 40 weeks. Extreme preterm is less than 28 weeks, very early preterm birth is between ...
and exposure to smoke, substances of abuse, hyperoxia, and hypoxia, so it may seem initially as if carotid body studies are only extending what we know about SIDS into another domain. However, understanding the mechanisms that impair carotid body development could help elucidate how certain aspects of neonatal, particularly
premature Premature may refer to: * ''Premature'' (2014 film), an American comedy film * ''Premature'' (2019 film), an American romantic drama film * '' PREMature'', a 2015 British television drama miniseries See also * Premature aging, of an organism * ...
, care might be improved. For example,
oxygen therapy Oxygen therapy, also known as supplemental oxygen, is the use of oxygen as medical treatment. Acute indications for therapy include hypoxemia (low blood oxygen levels), carbon monoxide toxicity and cluster headache. It may also be prophylactic ...
may be an example of a technique that exposes premature infants to such high oxygen levels that it prevents them from acquiring appropriate sensitivity to normal oxygen levels. ''Pregnancy'' Increased base rate of ventilation and sensitivity to both hypoxia and
hypercapnia Hypercapnia (from the Greek ''hyper'' = "above" or "too much" and ''kapnos'' = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous p ...
occur in pregnant women after
gestation Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pr ...
week 20, and studies suggest this is due at least in part to changes in peripheral chemoreceptor sensitivity. Similar changes in sensitivity have been found in women administered levels of
hormones A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
that mimic the stage of the pregnancy in which these effects being to appear, suggesting that carotid and aortic body sensitivity is modulated by neuroendocrine processes. However, findings tying peripheral chemoreceptors to pregnancy-induced variations in breathing could just be correlational, so further studies are needed to identify the cause behind this relation.


Physiology


Signal transduction

Peripheral chemoreceptors were identified as necessary to
breathing Breathing (or ventilation) is the process of moving air into and from the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen. All aerobic creatures need oxygen for cellu ...
regulation much sooner than their mechanisms for acquiring information from the bloodstream were beginning to be understood. Both carotid and aortic bodies are composed of type I and type II cells and are believed to transduce signals from blood chemicals in the same way, though post-transduction signal communication may differ. Chemosensory transduction in these
receptor Receptor may refer to: *Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a n ...
s is still an active area of research, and not all studies agree, but there is growing support for a transduction mechanism dependent upon
mitochondrial A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used t ...
consumption of oxygen affecting the
AMPK AMPK may refer to: * AMP-activated protein kinase 5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme (EC 2.7.11.31) that plays a role in cellular energy homeostasis, largely to activate gl ...
enzyme. Transferring the signal to the medulla requires that
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neu ...
be released from the vesicles in the type I cells, and as with many other neural cells, this is triggered by an influx of
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
into the cell after membrane
depolarization In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is ess ...
. The process of identifying
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
in interoceptors such as the peripheral chemoreceptors requires moving backward from membrane depolarization to discover the previous steps, often internal to the cell, that transduces blood chemicals to a neural signal. Up to this point, most research agrees that membrane depolarization is caused by inhibition of potassium channels that otherwise maintain the
resting potential A relatively static membrane potential which is usually referred to as the ground value for trans-membrane voltage. The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as op ...
. As to the step before potassium channel inhibition, many mechanisms are proposed, none of which receive unanimous support from the research community. Multiple types of potassium channels respond to hypoxia, with significant differences between different species, and a number of different types for each species. Expression of potassium channels also changes throughout the lifetime. Some studies propose that heme-oxygenase 2 is the
transducer A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and con ...
; however, since its deletion in mice does not affect chemoreceptor oxygen sensitivity, this hypothesis is open to question. Another enzyme, AMP-activated protein kinase (AMPK), provides a mechanism that could apply not only to all types of potassium channels but also other oxygen-sensing tissues in the body, such as pulmonary vasculature and neonatal chromaffin cells. AMPK is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
activated by an increase in the AMP: ATP ratio resulting from increasing
cellular respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
. Once activated, the
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
promotes production of ATP and suppresses reactions that consume it. AMPK activation is also a more appealing candidate because it can activate both of the two most common types of potassium channels. Another study identified that AMPK opens and closes potassium channels via
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
, further underlining the link between the two. The role of AMPK in oxygen sensing in type-1 cells has however also recently been called into question. This enzyme's function positions type I cells to uniquely take advantage of their mitochondria. However, AMPK is an enzyme found in many more types of cells than chemoreceptors because it helps regulate
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run ...
. The difference may actually lie in the cell's metabolism, rather than the AMPK enzyme; peripheral chemoreceptors display very high background rates of oxygen consumption, supported by its dense network of
capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
. Since its base rate of cellular respiration is so high, its AMPK would be more sensitive to reductions in blood borne oxygen, thus allowing it to respond to small variations in oxygen content before other cells begin to feel the effects of its absence. In this way, transduction in peripheral chemoreceptor cells is relatively unique. It does not require any specialized proteins that change shape in the presence of
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
or a specific receptor site for a particular tastant. Its necessary components include merely the mitochondria and an enzyme used to regulate its activity common to all aerobic cells, a suite of
potassium Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmos ...
and
calcium channels A calcium channel is an ion channel which shows selective permeability to calcium ions. It is sometimes synonymous with voltage-gated calcium channel, although there are also ligand-gated calcium channels. Comparison tables The following tables ex ...
and neurotransmitters common to many types of nerve cells, and a well-endowed version of the vasculature supporting all aerobic cells. Further research should identify why type I cells exhibit such a high metabolic rate compared to other cell types, as this may be the truly unique feature of the receptor. And thus, a receptor for an
aerobic Aerobic means "requiring air," in which "air" usually means oxygen. Aerobic may also refer to * Aerobic exercise, prolonged exercise of moderate intensity * Aerobics, a form of aerobic exercise * Aerobic respiration, the aerobic process of cel ...
organism's most basic energy source is composed of collection of cell structures common throughout the body.


Response to Hypoxia

Peripheral chemoreceptors are put under stress in a number of situations involving low access to oxygen, including exercise and exposure to high altitude. Under sustained hypoxic stress, regardless of the cause, peripheral chemoreceptors show a great deal of plasticity; they will both swell the size of chemosensing cells and increase their number. Though researchers were previously unsure how carotid and aortic bodies came to increase their numbers so rapidly, recent findings point to the type II cells, which were previously thought to have only a supportive role and are now believed to retain properties of
stem cells In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of ...
and can differentiate into type I transducer cells. Several studies suggest peripheral chemoreceptors play a role in ventilation during exercise. However, there is disagreement about whether they perform an excitatory or inhibitory role. Several studies point to increased circulation of
catecholamine A catecholamine (; abbreviated CA) is a monoamine neurotransmitter, an organic compound that has a catechol (benzene with two hydroxyl side groups next to each other) and a side-chain amine. Catechol can be either a free molecule or a su ...
or potassium during exercise as a potential effector on peripheral chemoreceptors; however, the specifics of this effect are not yet understood. All suggestions of peripheral chemoreceptor involvement conclude that they are not solely accountable for this response, emphasizing that these receptors are only one in a suite of oxygen-sensing cells that can respond in times of stress. Collecting information on carotid and aortic body activity in live, exercising humans is fraught with difficulty and often only indicates indirect evidence, so it is hard to draw expansive conclusions until more evidence has been amassed, and hopefully with more advanced techniques. In addition to ventilatory effects, peripheral chemoreceptors may influence neuroendocrine responses to exercise that can influence activities other than ventilation. Circulation of the
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
-promoting
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
,
glucagon Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises concentration of glucose and fatty acids in the bloodstream, and is considered to be the main catabolic hormone of the body. It is also used as a medication to tre ...
and a neurotransmitter,
norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin '' ad ...
, is increased in carotid- and aortic-body-enervated dogs, suggesting that peripheral chemoreceptors respond to low glucose levels in and may respond to other neuroendocrine signals in addition to what is traditionally considered to be their sole role of ventilatory regulation.


Role of central chemoreceptors

Peripheral chemoreceptors work in concert with central chemoreceptors, which also monitor blood but do it in the
cerebrospinal fluid Cerebrospinal fluid (CSF) is a clear, colorless body fluid found within the tissue that surrounds the brain and spinal cord of all vertebrates. CSF is produced by specialised ependymal cells in the choroid plexus of the ventricles of the ...
surrounding the
brain A brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as Visual perception, vision. I ...
. A high concentration of central chemoreceptors is found in the ventral medulla, the
brainstem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is ...
area that receives input from peripheral chemoreceptors. Taken together, these blood oxygen monitors contribute nerve signals to the vasomotor center of the medulla which can modulate several processes, including breathing, airway resistance,
blood pressure Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure ...
, and
arousal Arousal is the physiological and psychological state of being awoken or of sense organs stimulated to a point of perception. It involves activation of the ascending reticular activating system (ARAS) in the brain, which mediates wakefulness, th ...
, with central chemoformation about medullary oxygen levels and peripheral chemoreceptors about arterial oxygen. At an evolutionary level, this stabilization of oxygen levels, which also results in a more constant
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
concentration and pH, was important to manage oxygen flow in air-vs.-water breathing,
sleep Sleep is a sedentary state of mind and body. It is characterized by altered consciousness, relatively inhibited Perception, sensory activity, reduced muscle activity and reduced interactions with surroundings. It is distinguished from wakefuln ...
, and to maintain an ideal pH for
protein structure Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers specifically polypeptides formed from sequences of amino acids, the monomers of the polymer. A single amino acid monom ...
, since fluctuations in pH can denature a cell's enzymes.


See also

* Central chemoreceptors *
Chemoreceptors A chemoreceptor, also known as chemosensor, is a specialized sensory receptor which transduces a chemical substance (endogenous or induced) to generate a biological signal. This signal may be in the form of an action potential, if the chemorecept ...
*
Control of respiration The control of ventilation refers to the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and ...


References


External links

*
Overview at cvphysiology.com
* {{Respiratory physiology Sensory receptors Respiratory physiology