HOME

TheInfoList



OR:

In the
geosciences Earth science or geoscience includes all fields of natural science related to the planet Earth. This is a branch of science dealing with the physical, chemical, and biological complex constitutions and synergistic linkages of Earth's four sphe ...
, paleosol (''palaeosol'' in
Great Britain Great Britain is an island in the North Atlantic Ocean off the northwest coast of continental Europe. With an area of , it is the largest of the British Isles, the largest European island and the ninth-largest island in the world. It ...
and
Australia Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania, and numerous smaller islands. With an area of , Australia is the largest country by ...
) is an ancient soil that formed in the past. The precise definition of the term in
geology Geology () is a branch of natural science concerned with Earth and other Astronomical object, astronomical objects, the features or rock (geology), rocks of which it is composed, and the processes by which they change over time. Modern geology ...
and
paleontology Paleontology (), also spelled palaeontology or palæontology, is the scientific study of life that existed prior to, and sometimes including, the start of the Holocene epoch (roughly 11,700 years before present). It includes the study of fossi ...
is slightly different from its use in
soil science Soil science is the study of soil as a natural resource on the surface of the Earth including soil formation, classification and mapping; physical, chemical, biological, and fertility properties of soils; and these properties in relation to ...
. In geology and paleontology, a paleosol is a former soil preserved by burial underneath either
sediment Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand ...
s (alluvium or
loess Loess (, ; from german: Löss ) is a clastic, predominantly silt-sized sediment that is formed by the accumulation of wind-blown dust. Ten percent of Earth's land area is covered by loess or similar deposits. Loess is a periglacial or aeoli ...
) or volcanic deposits (
volcanic ash Volcanic ash consists of fragments of rock, mineral crystals, and volcanic glass, created during volcanic eruptions and measuring less than 2 mm (0.079 inches) in diameter. The term volcanic ash is also often loosely used to refer ...
), which in the case of older deposits have
lithified Lithification (from the Ancient Greek word ''lithos'' meaning 'rock' and the Latin-derived suffix ''-ific'') is the process in which sediments compact under pressure, expel connate fluids, and gradually become solid rock. Essentially, lithificatio ...
into rock. In
Quaternary The Quaternary ( ) is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). It follows the Neogene Period and spans from 2.58 million year ...
geology,
sedimentology Sedimentology encompasses the study of modern sediments such as sand, silt, and clay, and the processes that result in their formation (erosion and weathering), transport, deposition and diagenesis. Sedimentologists apply their understanding of m ...
,
paleoclimatology Paleoclimatology (British spelling, palaeoclimatology) is the study of climates for which direct measurements were not taken. As instrumental records only span a tiny part of Earth's history, the reconstruction of ancient climate is important to ...
, and geology in general, it is the typical and accepted practice to use the term "paleosol" to designate such "''fossil soils''" found buried within
sedimentary Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles ...
and volcanic deposits exposed in all continents. In soil science the definition differs only slightly: ''paleosols'' are soils formed long ago that have no relationship in their chemical and physical characteristics to the present-day climate or vegetation. Such soils are found within extremely old continental
craton A craton (, , or ; from grc-gre, κράτος "strength") is an old and stable part of the continental lithosphere, which consists of Earth's two topmost layers, the crust and the uppermost mantle. Having often survived cycles of merging and ...
s, or in small scattered locations in outliers of other ancient rock domains.


Properties

Because of the changes in the Earth's climate over the last 50 million years, soils formed under
tropical The tropics are the regions of Earth surrounding the Equator. They are defined in latitude by the Tropic of Cancer in the Northern Hemisphere at N and the Tropic of Capricorn in the Southern Hemisphere at S. The tropics are also referred to ...
rainforest Rainforests are characterized by a closed and continuous tree canopy, moisture-dependent vegetation, the presence of epiphytes and lianas and the absence of wildfire. Rainforest can be classified as tropical rainforest or temperate rainfores ...
(or even
savanna A savanna or savannah is a mixed woodland- grassland (i.e. grassy woodland) ecosystem characterised by the trees being sufficiently widely spaced so that the canopy does not close. The open canopy allows sufficient light to reach the ground ...
) have become exposed to increasingly
arid A region is arid when it severely lacks available water, to the extent of hindering or preventing the growth and development of plant and animal life. Regions with arid climates tend to lack vegetation and are called xeric or desertic. Most ...
climates which cause former
oxisol Oxisols are a soil order in USDA soil taxonomy, best known for their occurrence in tropical rain forest within 25 degrees north and south of the Equator. In the World Reference Base for Soil Resources (WRB), they belong mainly to the ferralsols, ...
s,
ultisols Ultisols, commonly known as red clay soils, are one of twelve soil orders in the United States Department of Agriculture soil taxonomy. The word "Ultisol" is derived from "ultimate", because Ultisols were seen as the ultimate product of continu ...
or even
alfisols Alfisols are a soil order in USDA soil taxonomy. Alfisols form in semi-arid to humid areas, typically under a hardwood forest cover. They have a clay-enriched subsoil and relatively high native fertility. "Alf" refers to aluminium (Al) and iron ...
to dry out in such a manner that a very hard crust is formed. This process has occurred so extensively in most parts of Australia as to restrict soil development - the former soil is effectively the parent material for a new soil, but it is so unweatherable that only a very poorly developed soil can exist in present dry climates, especially when they have become much drier during glacial periods in the
Quaternary The Quaternary ( ) is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). It follows the Neogene Period and spans from 2.58 million year ...
. In other parts of Australia, and in many parts of
Africa Africa is the world's second-largest and second-most populous continent, after Asia in both cases. At about 30.3 million km2 (11.7 million square miles) including adjacent islands, it covers 6% of Earth's total surface area ...
, drying out of former soils has not been so severe. This has led to large areas of relict
podsol In soil science, podzols are the typical soils of coniferous or boreal forests and also the typical soils of eucalypt forests and heathlands in southern Australia. In Western Europe, podzols develop on heathland, which is often a construct of ...
s in quite dry climates in the far southern inland of Australia (where
temperate rainforest Temperate rainforests are coniferous or broadleaf forests that occur in the temperate zone and receive heavy rain. Temperate rain forests occur in oceanic moist regions around the world: the Pacific temperate rain forests of North American ...
was formerly dominant) and to the formation of torrox soils (a suborder of
oxisol Oxisols are a soil order in USDA soil taxonomy, best known for their occurrence in tropical rain forest within 25 degrees north and south of the Equator. In the World Reference Base for Soil Resources (WRB), they belong mainly to the ferralsols, ...
s) in
southern Africa Southern Africa is the southernmost subregion of the African continent, south of the Congo and Tanzania. The physical location is the large part of Africa to the south of the extensive Congo River basin. Southern Africa is home to a number o ...
. Here, present climates allow, effectively, the maintenance of the old soils in climates under which they could not actually form if one were to start with the parent material on which they developed in the
Mesozoic The Mesozoic Era ( ), also called the Age of Reptiles, the Age of Conifers, and colloquially as the Age of the Dinosaurs is the second-to-last era of Earth's geological history, lasting from about , comprising the Triassic, Jurassic and Cretace ...
and
Paleocene The Paleocene, ( ) or Palaeocene, is a geological epoch that lasted from about 66 to 56 million years ago (mya). It is the first epoch of the Paleogene Period in the modern Cenozoic Era. The name is a combination of the Ancient Greek ''pala ...
. Paleosols in this sense are always exceedingly infertile
soils Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former ter ...
, containing available
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ea ...
levels orders of magnitude lower than in temperate regions with younger soils. Ecological studies have shown that this has forced highly specialised evolution amongst Australian flora to obtain minimal
nutrient A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excre ...
supplies. The fact that soil formation is simply not occurring makes ecologically sustainable management even more difficult. However, paleosols often contain the most exceptional
biodiversity Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic ('' genetic variability''), species ('' species diversity''), and ecosystem ('' ecosystem diversity'') ...
due to the absence of competition.


Taxonomic classification

The record of paleosols extends into the
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of th ...
in Earth's history, with rare paleosols older than 2.5 billion years. Geology, biology, and the atmosphere all changed significantly over that time, with dramatic shifts at the
Great Oxidation Event The Great Oxidation Event (GOE), also called the Great Oxygenation Event, the Oxygen Catastrophe, the Oxygen Revolution, the Oxygen Crisis, or the Oxygen Holocaust, was a time interval during the Paleoproterozoic era when the Earth's atmosphere ...
(2.42 billion years ago) and during the
Paleozoic The Paleozoic (or Palaeozoic) Era is the earliest of three geologic eras of the Phanerozoic Eon. The name ''Paleozoic'' ( ;) was coined by the British geologist Adam Sedgwick in 1838 by combining the Greek words ''palaiós'' (, "old") and ...
, when complex animals and land plants proliferated. Consequently, our modern soil classification system cannot be readily applied to paleosols. For example, a modern alfisol - broadly defined as a forest soil - would not have existed prior to the evolution of trees. More problematically, it is specifically defined by chemical properties that would not be preserved in the rock record. While modern soil orders are often used to describe paleosols in a qualitative sense, a paleosol-specific naming scheme has been proposed, although it is only used sporadically in the literature. Until a paleosol-specific naming scheme is fully adopted, many paleopedologists have stuck to using the taxonomic classification of soils provided by the United States Department of Agriculture. This soil taxonomy attempted to use the measurable properties and objective features within soils to classify them. The U.S. Soil Taxonomy also developed a hierarchical structure among the different soil taxa, classifying the soils initially at a general level, then assigning soils to progressively more limited subdivisions. This taxonomy does come with drawbacks, including an emphasis on observable features, new nomenclature, and hierarchical organization. The emphasis on observable features can make the soil taxonomy similar in appearance to a legal document. The nomenclature is off-putting, and alien upon first interaction. The hierarchical structure cannot be applied more deeply than the order level regarding paleosols. However, despite these drawbacks, the U.S. Soil Taxonomy is still the most comprehensive and influential soil classification system to date. To distinguish and identify these paleosols from one another, certain diagnostic horizons and features need to be taken into account. For instance, all paleosols have an A horizon, but histosols have an O horizon above the A horizon.


Paleosol identification

Rye & Holland (1998) laid out five criteria for identifying a paleosol. While this was prompted by the need for more stringent identification of Precambrian paleosols, it is applicable to paleosols of any age. The criteria are: * Formed in situ on
bedrock In geology, bedrock is solid rock that lies under loose material ( regolith) within the crust of Earth or another terrestrial planet. Definition Bedrock is the solid rock that underlies looser surface material. An exposed portion of be ...
, * soft-sediment deformation at the top of the profile, and * up-profile changes in chemistry, texture, and mineralogy consistent with terrestrial weathering processes. In the field, physical signs of a paleosol include evidence of horizonation (e.g., color and textural changes), bedrock incorporated into a finer overlying
lithology The lithology of a rock unit is a description of its physical characteristics visible at outcrop, in hand or core samples, or with low magnification microscopy. Physical characteristics include colour, texture, grain size, and composition. Li ...
(corestones), and evidence of surface processes (e.g., root traces, organic matter, burrows,
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
alteration). Below is a list of soils and some of their diagnostic features that provides a framework for telling these paleosols, or even modern soils, apart:


Entisol (incipient soil)

Horizons (top-to-bottom): A & C This soil has a very slight degree of soil formation. Original crystalline, metamorphic, or sedimentary features of the parent material experienced little alteration from soil formation. Most are found on young geomorphic surfaces such as flood plains and on steep slopes where erosion removes material as the soil forms. Signs of early successional vegetation of grasses and other herbs and shrubs. Root traces are diagnostic of this type of paleosol because of the small amount of alteration from their parent material in other respects. However, for Entisols of Ordivician age or older, a peak in magnetic susceptibility is indicative of an Entisol.


Inceptisol (young soil)

Horizons: A, sometimes E, Bw, & C These soils represent a stage of formation beyond Entisols, but not to the degree of development in other soil orders. Typically can be imagined as having a light-colored surface horizon over a moderately weathered subsurface horizon. Forms in low-rolling parts of landscapes in and around steep mountain fronts. Shrubby woodlands of pole trees that form during recolonization of disturbed ground by forests are particularly characteristic of this paleosol. Open woodlands and wooded grasslands are also characteristic of this paleosol.


Andisol (volcanic ash soil)

Horizons: A, Bw, & C These are soils of volcanic ash of siliceous nature, consisting of bubbles or shards of volcanic glass with a high internal surface area. This soil weathers rapidly to imogolite and smectite. Thus they are highly fertile, rich in organic matter, and have particularly low bulk density. These properties and the aforementioned weathering products typically alter during burial, sometimes to distinctive minerals like celadonite and clinoptilolite. At least 60% recognizable pyroclastic fragments in thin sections are characteristic of this paleosol. This paleosol forms in and around volcanoes.


Histosol (peaty soil)

Horizons: O, A, sometimes Bg, & C Organic-rich soils with thick peaty horizons, that form in cool, well drained localities or low-lying, permanently waterlogged areas. The primary formation process is accumulation of peat (organic matter), meaning organic matter is produced faster than it can decompose in the soil. The leaching or formation of gley minerals (pyrite or siderite) overprinting prior soil or sedimentary features is associated with peat accumulation.


Spodosol (sandy forest soil)

Horizons: A, E, sometimes Bh, Bs, & C A subsurface horizon enriched with iron and aluminum oxides or organic matter is characteristic of Spodosols. Displays opaque cements that form distinctive radially cracked, concretionary rims to abundant quartz grains in thin sections. Spodosols form on hilly bedrock or low, rolling quartz-rich sediments. Found principally in humid climates in which clay and soluble salts are dissolved and washed out of the profile and most common in temperate regions. Characteristic vegetation are conifer forests and other kinds of evergreen woody vegetation that can tolerate low nutrient levels and high soil acidity.


Alfisol (fertile forest soil)

Horizons: A, sometimes E, Bt, sometimes Bk, & C Base-rich forested soils that have a light-colored surface horizon over a clayey subsurface horizon, rich in exchangeable cations. If paleosols contain nodules of carbonate in a horizon deep within the profile, such base saturation can be assumed. If lacking in carbonate nodules, Alfisols can be distinguished by the abundance of base rich clays or by molecular weathering ratios of alumina/bases of less than 2. These soils are not found at the poles or on high mountain tops.


Ultisol (base-poor forest soil)

Horizons: A, sometimes E, Bt, & C Base-poor forest soils that are similar to Alfisols at first glance. However, Ultisols are more deeply weathered of mineral nutrients. There should not be any calcareous material anywhere within an Ultisol profile and have molecular weathering ratios of alumina/bases of more than 2. Kaolinite and highly weathered aluminous minerals such as gibbsite are common in the profile. Low-base status is attributed to a long formation time. Form mostly on older parts of landscapes, such as rolling hills of bedrock, high alluvial terraces, and plateau tops. Natural vegetation consists of coniferous or hardwood forests.


Oxisol (tropical deeply-weathered soil)

Horizons: A, Bo, sometimes Bv, & C Deeply weathered soils with texturally uniform profiles. Dominated by kaolinitic clays or other base-poor oxides such as gibbsite or boehmite. Contains molecular weathering ratios of alumina/bases of 10 or more. These soils have deeply weathered mottled horizons. Characteristic of this type of paleosol is a stable microstructure of sand-sized spherical micropeds of iron-stained lay. Very old, often amounting to tens of millions of years. Found on stable continental locations on gentle slopes of plateaus, terraces, and plains. The natural vegetation for Oxisols is a rainforest.


Vertisol (swelling clay soil)

Horizons: A, Bw, & C These are uniform, thick, clayey soils that have deep, wide cracks. Cracking can produce a hummock-and-swale topography. Mostly composed of smectitic clays. Most Vertisols are found on intermediate to basaltic materials. Found mainly in flat terrain at the foot of gentle slopes. Climate and vegetation are dry and sparse enough that alkaline reactions can be maintained. Vegetation ranges from grassland to open woodland, with wooded grassland being common.


Mollisol (grassland soil)

Horizons: A, sometimes Bt, Bk, sometimes By, & C Well-developed, base-rich, surface horizon of intimately mixed clay and organic matter. An abundance of fine root traces and crumb ped structures are characteristic of this paleosol. The surface horizon characteristic of this paleosol is created by fine root systems of grassy vegetation and the burrowing activity of many soil invertebrate species. Mollisols are found in low, rolling, or flat country.


Aridisol (desert soil)

Horizons: A, sometimes Bt, Bk, sometimes By, & C Forms in arid to semi-arid regions, and that lack of rain allows for the creation of shallow calcareous, gypsiferous, or salty horizons. These cements form large nodules or continuous layers. Light-colored, soft, and often vesicular surface horizon. Subsurface horizons are not cemented with any of the aforementioned cements. Mostly found in low-lying areas because steep slopes in arid regions tend to be eroded back to bedrock. Vegetation is sparse and includes prickly shrubs and cacti.


Gelisol (permafrost soil)

Horizons: A, sometimes By, & C Soils with ground ice or other permafrost features within one meter of the surface. In paleosols, locations of ice can be preserved as clastic dikes, freeze banding, or other deformations created by ground ice. Tillites and other glacigenic deposits are indicative of Gelisols. These soils form under polar desert, tundra, and taiga vegetation. Includes a surprising array of histic epipedons, desert pavements, salic, and calcic horizons. Many other factors, such as ped structures, such as the presence of blocky, angular or granular peds and fabric type, like clinobimasepic plasmic fabric, are structures that can help one identify if they are dealing with a paleosol. Some of these structures are very helpful when narrowing down the paleosol that is being identified. However, any paleosol should be verified geochemically before use in proxy-based reconstructions; post-deposition alteration processes, such as potassium
metasomatism Metasomatism (from the Greek μετά ''metá'' "change" and σῶμα ''sôma'' "body") is the chemical alteration of a rock by hydrothermal and other fluids. It is the replacement of one rock by another of different mineralogical and chemical co ...
, can change a paleosol's chemistry without dramatically altering its physical appearance.


Applications


Paleoclimate reconstructions

Because rates and styles of weathering are dependent on climatic factors, paleosols can be used to reconstruct variables of past climate. Mean annual precipitation (MAP) and air temperature (MAAT) are two commonly-reconstructed variables which, along with seasonality and in conjunction with other paleoenvironmental tools, can be used to describe past terrestrial climates. A suite of paleoclimatic proxies exist and while they vary in focus, many rely on changes in chemical composition throughout a soil profile that occur during weathering, burial, and post-burial processes. Their use depends on factors such as post-burial alteration, parent material, and soil order; not every proxy is applicable to every paleosol. Most proxies are applicable to Phanerozoic paleosols (not older), as landscape processes changed dramatically after the rise of land plants. Seasonality (the presence and strength of seasons) requires a more nuanced reconstruction approach. Proposed seasonality proxies primarily rely on a soil wetting/drying process, during which pedogenic carbonate can form; like other proxies, this tool is continually being tested and refined.


Paleoatmosphere reconstructions

Soils form in near-constant contact with the atmosphere, so their chemical composition is affected by the composition of the atmosphere through both direct and indirect pathways. The oxidation of paleosols has been used as an indicator of atmospheric oxygen, which has risen over Earth's history. Paleosols have also been used to reconstruct atmospheric carbon dioxide levels, based on modern studies of
soil carbon Soil carbon is the solid carbon stored in global soils. This includes both soil organic matter and inorganic carbon as carbonate minerals. Soil carbon is a carbon sink in regard to the global carbon cycle, playing a role in biogeochemistry, c ...
gas exchange, carbon isotopes in pedogenic carbonate nodules, and mass-balance approaches taking multiple atmospheric gases (typically
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
,
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
, and
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
) into account. These methods are being actively developed in the field of early Earth research.


Paleobotany

Paleosols are an important archive of information about ancient ecosystems and various components of fossil soils can be used to study past plant life. Paleosols often contain ancient plant materials such as
pollen Pollen is a powdery substance produced by seed plants. It consists of pollen grains (highly reduced microgametophytes), which produce male gametes (sperm cells). Pollen grains have a hard coat made of sporopollenin that protects the gametop ...
grains and
phytoliths Phytoliths (from Greek, "plant stone") are rigid, microscopic structures made of silica, found in some plant tissues and persisting after the decay of the plant. These plants take up silica from the soil, whereupon it is deposited within differe ...
, a biomineralized form of
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is ...
produced by many plants such as grasses. Both pollen and phytolith fossils from different plant species have characteristic shapes that can be traced back to their parent plants. Over long geological time scales, phytoliths may not necessarily be preserved in paleosols due to ability of the poorly crystalline silica to dissolve. Another indicator of plant community composition in paleosols is the carbon isotopic signature. The ratio of different carbon
isotopes Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass numbers ...
in organic matter in paleosols reflects the proportions of plants using C‑3 photosynthesis, which grow in cooler and wetter climates, versus plants using C‑4 photosynthesis, which are better adapted to hotter and drier conditions. Other methods for detecting past plant life in paleosols are based on identifying the remains of leaf waxes, which are slow to break down in soils over time.


Paleoseismology

As records of previous Earth surfaces that can be stacked on one another, paleosol sequences are also useful in the field of
paleoseismology Paleoseismology looks at geologic sediments and rocks, for signs of ancient earthquakes. It is used to supplement seismic monitoring, for the calculation of seismic hazard. Paleoseismology is usually restricted to geologic regimes that have ...
.


See also

*
Paleopedology Paleopedology (palaeopedology in the United Kingdom) is the discipline that studies soils of past geological eras, from quite recent ( Quaternary) to the earliest periods of the Earth's history. Paleopedology can be seen either as a branch of s ...
*
Paleopedological record {{inline citations, date=June 2013 The paleopedological record is, essentially, the fossil record of soils. The paleopedological record consists chiefly of paleosols buried by flood sediments, or preserved at geological unconformities, especially p ...
*
Pedogenesis Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order ( anisotropy) within soils. These alterations ...
*
Pedology (soil study) Pedology (from Greek: πέδον, ''pedon'', "soil"; and λόγος, ''logos'', "study") is a discipline within soil science which focuses on understanding and characterizing soil formation, evolution, and the theoretical frameworks for modeling ...


References


External links

* {{cite report , title=Paleopedology , id=IUSS Commission 1.6 , department=(Sub-) Commission on Paleopedology , publisher=International Union of Soil Science & International Union for Quaternary Research , url=http://fadr.msu.ru/inqua/ Pedology Historical geology Types of soil