HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the outer automorphism group of a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, , is the
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
, , where is the
automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
of and ) is the subgroup consisting of
inner automorphism In abstract algebra an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the ''conjugating element''. They can be realized via simple operations from within the group itse ...
s. The outer automorphism group is usually denoted . If is trivial and has a trivial
center Center or centre may refer to: Mathematics *Center (geometry), the middle of an object * Center (algebra), used in various contexts ** Center (group theory) ** Center (ring theory) * Graph center, the set of all vertices of minimum eccentrici ...
, then is said to be
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
. An automorphism of a group which is not inner is called an outer automorphism. The
cosets In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
of with respect to outer automorphisms are then the elements of ; this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups. If the inner automorphism group is trivial (when a group is abelian), the automorphism group and outer automorphism group are naturally identified; that is, the outer automorphism group does act on the group. For example, for the
alternating group In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or Basic pr ...
, , the outer automorphism group is usually the group of order 2, with exceptions noted below. Considering as a subgroup of the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
, , conjugation by any
odd permutation In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total o ...
is an outer automorphism of or more precisely "represents the class of the (non-trivial) outer automorphism of ", but the outer automorphism does not correspond to conjugation by any ''particular'' odd element, and all conjugations by odd elements are equivalent up to conjugation by an even element.


Structure

The
Schreier conjecture In finite group theory, the Schreier conjecture asserts that the outer automorphism group of every finite simple group is solvable. It was proposed by Otto Schreier in 1926, and is now known to be true as a result of the classification of finite ...
asserts that is always a
solvable group In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminate ...
when is a finite
simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The d ...
. This result is now known to be true as a corollary of the
classification of finite simple groups In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else i ...
, although no simpler proof is known.


As dual of the center

The outer automorphism group is dual to the center in the following sense: conjugation by an element of is an automorphism, yielding a map . The
kernel Kernel may refer to: Computing * Kernel (operating system), the central component of most operating systems * Kernel (image processing), a matrix used for image convolution * Compute kernel, in GPGPU programming * Kernel method, in machine learn ...
of the conjugation map is the center, while the
cokernel The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the nam ...
is the outer automorphism group (and the image is the
inner automorphism In abstract algebra an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the ''conjugating element''. They can be realized via simple operations from within the group itse ...
group). This can be summarized by the
exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context ...
: :.


Applications

The outer automorphism group of a group acts on
conjugacy class In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other wo ...
es, and accordingly on the
character table In group theory, a branch of abstract algebra, a character table is a two-dimensional table whose rows correspond to irreducible representations, and whose columns correspond to conjugacy classes of group elements. The entries consist of character ...
. See details at character table: outer automorphisms.


Topology of surfaces

The outer automorphism group is important in the
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
of
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
s because there is a connection provided by the Dehn–Nielsen theorem: the extended
mapping class group In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Mo ...
of the surface is the outer automorphism group of its
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, o ...
.


In finite groups

For the outer automorphism groups of all finite simple groups see the
list of finite simple groups A ''list'' is any set of items in a row. List or lists may also refer to: People * List (surname) Organizations * List College, an undergraduate division of the Jewish Theological Seminary of America * SC Germania List, German rugby unio ...
. Sporadic simple groups and alternating groups (other than the alternating group, ; see below) all have outer automorphism groups of order 1 or 2. The outer automorphism group of a finite simple
group of Lie type In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phra ...
is an extension of a group of "diagonal automorphisms" (cyclic except for , when it has order 4), a group of "field automorphisms" (always cyclic), and a group of "graph automorphisms" (of order 1 or 2 except for , when it is the symmetric group on 3 points). These extensions are not always
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in wh ...
s, as the case of the alternating group shows; a precise criterion for this to happen was given in 2003.


In symmetric and alternating groups

The outer automorphism group of a finite simple group in some infinite family of finite simple groups can almost always be given by a uniform formula that works for all elements of the family. There is just one exception to this: the alternating group has outer automorphism group of order 4, rather than 2 as do the other simple alternating groups (given by conjugation by an
odd permutation In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any total o ...
). Equivalently the symmetric group is the only symmetric group with a non-trivial outer automorphism group. :\begin n \neq 6: \operatorname(\mathrm_n) & = \mathrm_1 \\ n \geq 3,\ n \neq 6: \operatorname(\mathrm_n) & = \mathrm_2 \\ \operatorname(\mathrm_6) & = \mathrm_2 \\ \operatorname(\mathrm_6) & = \mathrm_2 \times \mathrm_2 \end Note that, in the case of , the sequence does not split. A similar result holds for any , odd.


In reductive algebraic groups

Let now be a connected
reductive group In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direct ...
over an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
. Then any two
Borel subgroup In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup ...
s are conjugate by an inner automorphism, so to study outer automorphisms it suffices to consider automorphisms that fix a given Borel subgroup. Associated to the Borel subgroup is a set of simple roots, and the outer automorphism may permute them, while preserving the structure of the associated
Dynkin diagram In the Mathematics, mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of Graph (discrete mathematics), graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the ...
. In this way one may identify the automorphism group of the Dynkin diagram of with a subgroup of . has a very symmetric Dynkin diagram, which yields a large outer automorphism group of , namely ; this is called triality.


In complex and real simple Lie algebras

The preceding interpretation of outer automorphisms as symmetries of a Dynkin diagram follows from the general fact, that for a complex or real simple Lie algebra, , the automorphism group is a
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in wh ...
of and ; i.e., the
short exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context ...
: splits. In the complex simple case, this is a classical result, whereas for real simple Lie algebras, this fact has been proven as recently as 2010.JLT20035
/ref>


Word play

The term ''outer automorphism'' lends itself to
word play Word play or wordplay (also: play-on-words) is a literary technique and a form of wit in which words used become the main subject of the work, primarily for the purpose of intended effect or amusement. Examples of word play include puns, pho ...
: the term ''outermorphism'' is sometimes used for ''outer automorphism'', and a particular
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
on which acts is called ''
outer space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, pred ...
''.


See also

*
Mapping class group In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Mo ...
* Out(''F'')


References


External links


ATLAS of Finite Group Representations-V3
contains a lot of information on various classes of finite groups (in particular sporadic simple groups), including the order of {{math, Out(''G'') for each group listed. Group theory Group automorphisms