HOME

TheInfoList



OR:

Nitrifying bacteria are
chemolithotrophic Lithotrophs are a diverse group of organisms using an inorganic substrate (usually of mineral origin) to obtain reducing equivalents for use in biosynthesis (e.g., carbon dioxide fixation) or energy conservation (i.e., ATP production) via aerobic ...
organisms that include species of genera such as '' Nitrosomonas'', ''
Nitrosococcus ''Nitrosococcus'' is a genus of Gram-negative bacteria.George M. Garrity: ''Bergey's Manual of Systematic Bacteriology ''Bergey's Manual of Systematic Bacteriology'' is the main resource for determining the identity of prokaryotic organisms, e ...
'', '' Nitrobacter'', '' Nitrospina'', '' Nitrospira'' and '' Nitrococcus''. These bacteria get their energy from the
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or ...
of inorganic
nitrogen compounds The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also fo ...
. Types include ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). Many species of nitrifying bacteria have complex internal membrane systems that are the location for key
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s in
nitrification ''Nitrification'' is the biological oxidation of ammonia to nitrite followed by the oxidation of the nitrite to nitrate occurring through separate organisms or direct ammonia oxidation to nitrate in comammox bacteria. The transformation of ...
:
ammonia monooxygenase Ammonia monooxygenase (, ''AMO'') is an enzyme, which catalyses the following chemical reaction : ammonia + AH2 + O2 \rightleftharpoons NH2OH + A + H2O Ammonia monooxygenase contains copper and possibly nonheme iron. AMO is the first enzyme in ...
(which oxidizes
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous ...
to
hydroxylamine Hydroxylamine is an inorganic compound with the formula . The material is a white crystalline, hygroscopic compound.Greenwood and Earnshaw. ''Chemistry of the Elements.'' 2nd Edition. Reed Educational and Professional Publishing Ltd. pp. 431–43 ...
), hydroxylamine oxidoreductase (which oxidizes hydroxylamine to
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its ...
- which is further oxidized to nitrite by a currently unidentified enzyme), and
nitrite oxidoreductase Nitrite oxidoreductase (NOR or NXR) is an enzyme involved in nitrification. It is the last step in the process of aerobic ammonia oxidation, which is carried out by two groups of nitrifying bacteria: ammonia oxidizers such as '' Nitrosospira'', ''N ...
(which oxidizes
nitrite The nitrite ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name nitrite also ...
to
nitrate Nitrate is a polyatomic ion with the chemical formula . Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are soluble in water. An example of an insolu ...
).


Ecology

Nitrifying bacteria are present in distinct taxonomical groups and are found in highest numbers where considerable amounts of ammonia are present (such as areas with extensive protein decomposition, and sewage treatment plants). Nitrifying bacteria thrive in lakes, streams, and rivers with high inputs and outputs of sewage, wastewater and freshwater because of the high ammonia content.


Oxidation of ammonia to nitrate

Nitrification ''Nitrification'' is the biological oxidation of ammonia to nitrite followed by the oxidation of the nitrite to nitrate occurring through separate organisms or direct ammonia oxidation to nitrate in comammox bacteria. The transformation of ...
in nature is a two-step oxidation process of ammonium () or ammonia () to nitrite () and then to nitrate () catalyzed by two ubiquitous bacterial groups growing together. The first reaction is oxidation of ammonium to nitrite by ammonia oxidizing bacteria (AOB) represented by members of Betaproteobacteria and
Gammaproteobacteria Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota (synonym Proteobacteria). It contains about 250 genera, which makes it the most genera-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically imp ...
. Further organisms able to oxidize ammonia are
Archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaeba ...
(AOA). The second reaction is oxidation of nitrite () to nitrate by nitrite-oxidizing bacteria (NOB), represented by the members of Nitrospinota, Nitrospirota,
Pseudomonadota Pseudomonadota (synonym Proteobacteria) is a major phylum of Gram-negative bacteria. The renaming of phyla in 2021 remains controversial among microbiologists, many of whom continue to use the earlier names of long standing in the literature. Th ...
, and
Chloroflexota The Chloroflexota are a phylum of bacteria containing isolates with a diversity of phenotypes, including members that are aerobic thermophiles, which use oxygen and grow well in high temperatures; anoxygenic phototrophs, which use light for p ...
.Schaechter M. "Encyclopedia of Microbiology", AP, Amsterdam 2009 This two-step process was described already in 1890 by the Ukrainian
microbiologist A microbiologist (from Greek ) is a scientist who studies microscopic life forms and processes. This includes study of the growth, interactions and characteristics of microscopic organisms such as bacteria, algae, fungi, and some types of para ...
Sergei Winogradsky Sergei Nikolaievich Winogradsky (or Vinohradsky; published under the name of Sergius Winogradsky or M. S. Winogradsky from Ukrainian Mykolayovych Serhiy; uk, Сергій Миколайович Виноградський; 1 September 1856 – ...
. Ammonia can be also oxidized completely to nitrate by one comammox bacterium.


First step nitrification - molecular mechanism

Ammonia oxidation in autotrophic nitrification is a complex process that requires several
enzymes Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. ...
as well as
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
as a reactant. The key enzymes necessary for releasing energy during oxidation of ammonia to nitrite are
ammonia monooxygenase Ammonia monooxygenase (, ''AMO'') is an enzyme, which catalyses the following chemical reaction : ammonia + AH2 + O2 \rightleftharpoons NH2OH + A + H2O Ammonia monooxygenase contains copper and possibly nonheme iron. AMO is the first enzyme in ...
(AMO) and hydroxylamine oxidoreductase (HAO). The first is a transmembrane copper protein which catalyzes the oxidation of ammonia to hydroxylamine (1.1) taking two electrons directly from the quinone pool. This reaction requires O2. The second step of this process has recently fallen into question. For the past few decades, the common view was that a trimeric multiheme c-type HAO converts hydroxylamine into nitrite in the periplasm with production of four electrons (1.2). The stream of four electrons is channeled through cytochrome c554 to a membrane-bound cytochrome c552. Two of the electrons are routed back to AMO, where they are used for the oxidation of ammonia (quinol pool). The remaining two electrons are used to generate a proton motive force and reduce NAD(P) through reverse electron transport. Recent results, however, show that HAO does not produce nitrite as a direct product of catalysis. This enzyme instead produces nitric oxide and three electrons. Nitric oxide can then be oxidized by other enzymes (or oxygen) to nitrite. In this paradigm, the electron balance for overall metabolism needs to be reconsidered. : (1) : (1.1) : (1.2)


Second step nitrification - molecular mechanism

Nitrite produced in the first step of autotrophic nitrification is oxidized to nitrate by nitrite oxidoreductase (NXR)(2). It is a membrane-associated iron-sulfur molybdo protein and is part of an electron transfer chain which channels electrons from nitrite to molecular oxygen. The enzymatic mechanisms involved in nitrite-oxidizing bacteria are less described than that of ammonium oxidation. Recent research (e.g. Woźnica A. et al., 2013) proposes a new hypothetical model of NOB electron transport chain and NXR mechanisms. Here, in contrast to earlier models, the NXR would act on the outside of the plasma membrane and directly contribute to a mechanism of proton gradient generation as postulated by Spieck and coworkers. Nevertheless, the molecular mechanism of nitrite oxidation is an open question. : (2)


Comammox bacteria


Characteristics of nitrifying bacteria


Nitrifying bacteria that oxidize ammonia


Nitrifying bacteria that oxidize nitrite


Comammox bacteria


See also

*
Root nodule Root nodules are found on the roots of plants, primarily legumes, that form a symbiosis with nitrogen-fixing bacteria. Under nitrogen-limiting conditions, capable plants form a symbiotic relationship with a host-specific strain of bacteria known a ...
*
Denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denit ...
* Denitrifying bacteria *
f-ratio F-ratio or f-ratio may refer to: * The F-ratio used in statistics, which relates the variances of independent samples; see F-distribution * f-ratio (oceanography), which relates recycled and total primary production in the surface ocean * f-number ...
*
Nitrification ''Nitrification'' is the biological oxidation of ammonia to nitrite followed by the oxidation of the nitrite to nitrate occurring through separate organisms or direct ammonia oxidation to nitrate in comammox bacteria. The transformation of ...
*
Nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biolo ...
*
Nitrogen deficiency Nitrogen deficiency is a deficiency of nitrogen in plants. This can occur when organic matter with high carbon content, such as sawdust, is added to soil. Soil organisms use any nitrogen available to break down carbon sources, making nitrogen una ...
*
Nitrogen fixation Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmo ...
*
Electron transport chain An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples ...
* Comammox


References

{{reflist Bacteriology Nitrogen cycle Metabolism Soil biology