HOME

TheInfoList



OR:

Neurotrophins are a family of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s that induce the survival, development, and function of
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
. They belong to a class of growth factors, secreted proteins that can signal particular cells to survive, differentiate, or grow. Growth factors such as neurotrophins that promote the survival of neurons are known as neurotrophic factors. Neurotrophic factors are secreted by target tissue and act by preventing the associated neuron from initiating programmed cell death – allowing the neurons to survive. Neurotrophins also induce differentiation of progenitor cells, to ''form'' neurons. Although the vast majority of neurons in the mammalian
brain A brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as Visual perception, vision. I ...
are formed prenatally, parts of the adult brain (for example, the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic syste ...
) retain the ability to grow new neurons from neural
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of ...
s, a process known as
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NEC ...
. Neurotrophins are chemicals that help to stimulate and control neurogenesis.


Terminology

According to the United States National Library of Medicine's
medical subject headings Medical Subject Headings (MeSH) is a comprehensive controlled vocabulary for the purpose of indexing journal articles and books in the life sciences. It serves as a thesaurus that facilitates searching. Created and updated by the United States ...
, the term ''neurotrophin'' may be used as a synonym for '' neurotrophic factor'', but the term ''neurotrophin'' is more generally reserved for four structurally related factors: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). The term ''neurotrophic factor'' generally refers to these four neurotrophins, the GDNF family of ligands, and ciliary neurotrophic factor (CNTF), among other biomolecules. Neurotrophin-6 and neurotrophin-7 also exist but are only found in
zebrafish The zebrafish (''Danio rerio'') is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (and thus often ca ...
.


Function

During the development of the vertebrate nervous system, many neurons become redundant (because they have died, failed to connect to target cells, etc.) and are eliminated. At the same time, developing neurons send out axon outgrowths that contact their target cells. Such cells control their degree of innervation (the number of axon connections) by the secretion of various specific neurotrophic factors that are essential for neuron survival. One of these is nerve growth factor (NGF or beta-NGF), a vertebrate protein that stimulates division and differentiation of sympathetic and embryonic sensory neurons. NGF is mostly found outside the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
(CNS), but slight traces have been detected in adult CNS tissues, although a physiological role for this is unknown. It has also been found in several snake venoms. In the peripheral and central neurons, neurotrophins are important regulators for survival, differentiation, and maintenance of nerve cells. They are small proteins that secrete into the nervous system to help keep nerve cells alive. There are two distinct classes of
glycosylated Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
receptors that can bind to neurotrophins. These two proteins are p75 (NTR), which binds to all neurotrophins, and subtypes of Trk, which are each specific for different neurotrophins. The reported structure above is a 2.6 Å-resolution crystal structure of neurotrophin-3 (NT-3) complexed to the ectodomain of glycosylated p75 (NRT), forming a symmetrical crystal structure.


Receptors

: There are two classes of
receptor Receptor may refer to: *Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a n ...
s for neurotrophins: p75 and the "Trk" family of Tyrosine kinases receptors.


Types


Nerve growth factor

Nerve growth factor (NGF), the prototypical growth factor, is a protein secreted by a neuron's target cell. NGF is critical for the survival and maintenance of sympathetic and sensory neurons. NGF is released from the target cells, binds to and activates its high affinity receptor TrkA on the neuron, and is internalized into the responsive neuron. The NGF/TrkA complex is subsequently trafficked back to the neuron's
cell body The soma (pl. ''somata'' or ''somas''), perikaryon (pl. ''perikarya''), neurocyton, or cell body is the bulbous, non-process portion of a neuron or other brain cell type, containing the cell nucleus. The word 'soma' comes from the Greek '' σῶμ ...
. This movement of NGF from axon tip to
soma Soma may refer to: Businesses and brands * SOMA (architects), a New York–based firm of architects * Soma (company), a company that designs eco-friendly water filtration systems * SOMA Fabrications, a builder of bicycle frames and other bicycle ...
is thought to be involved in the long-distance signaling of neurons.


Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor found originally in the
brain A brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as Visual perception, vision. I ...
, but also found in the periphery. To be specific, it is a protein that has activity on certain neurons of the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
and the peripheral nervous system; it helps to support the survival of existing neurons, and encourage the growth and differentiation of new neurons and
synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
s through
axonal An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action po ...
and
dendritic Dendrite derives from the Greek word "dendron" meaning ( "tree-like"), and may refer to: Biology *Dendrite, a branched projection of a neuron * Dendrite (non-neuronal), branching projections of certain skin cells and immune cells Physical *Dendr ...
sprouting. In the brain, it is active in the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic syste ...
, cortex,
cerebellum The cerebellum (Latin for "little brain") is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as or even larger. In humans, the cerebe ...
, and basal forebrain — areas vital to learning, memory, and higher thinking. BDNF was the second neurotrophic factor to be characterized, after NGF and before neurotrophin-3. BDNF is one of the most active substances to stimulate neurogenesis. Mice born without the ability to make BDNF suffer developmental defects in the brain and sensory nervous system, and usually die soon after birth, suggesting that BDNF plays an important role in normal
neural development The development of the nervous system, or neural development (neurodevelopment), refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The fiel ...
. Despite its name, BDNF is actually found in a range of tissue and cell types, not just the brain. Expression can be seen in the retina, the CNS, motor neurons, the kidneys, and the prostate. Exercise has been shown to increase the amount of BDNF and therefore serve as a vehicle for neuroplasticity.


Neurotrophin-3

Neurotrophin-3, or NT-3, is a neurotrophic factor, in the NGF-family of neurotrophins. It is a protein growth factor that has activity on certain neurons of the peripheral and
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
; it helps to support the survival and differentiation of existing neurons, and encourages the growth and differentiation of new neurons and
synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
s. NT-3 is the third neurotrophic factor to be characterized, after NGF and BDNF. NT-3 is unique among the neurotrophins in the number of neurons it has potential to stimulate, given its ability to activate two of the receptor tyrosine kinase neurotrophin receptors ( TrkC and TrkB). Mice born without the ability to make NT-3 have loss of proprioceptive and subsets of mechanoreceptive sensory neurons.


Neurotrophin-4

Neurotrophin-4 (NT-4) is a neurotrophic factor that signals predominantly through the TrkB receptor tyrosine kinase. It is also known as NT4, NT5, NTF4, and NT-4/5.


DHEA and DHEA sulfate

The
endogenous Endogenous substances and processes are those that originate from within a living system such as an organism, tissue, or cell. In contrast, exogenous substances and processes are those that originate from outside of an organism. For example, ...
steroid A steroid is a biologically active organic compound with four rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes that alter membrane fluidity; and ...
s dehydroepiandrosterone (DHEA) and its sulfate
ester In chemistry, an ester is a compound derived from an oxoacid (organic or inorganic) in which at least one hydroxyl group () is replaced by an alkoxy group (), as in the substitution reaction of a carboxylic acid and an alcohol. Glycerides ...
,
DHEA sulfate Dehydroepiandrosterone sulfate, abbreviated as DHEA sulfate or DHEA-S, also known as androstenolone sulfate, is an endogenous androstane steroid that is produced by the adrenal cortex. It is the 3β-sulfate ester and a metabolite of dehydroepi ...
(DHEA-S), have been identified as
small-molecule Within the fields of molecular biology and pharmacology, a small molecule or micromolecule is a low molecular weight (≤ 1000 daltons) organic compound that may regulate a biological process, with a size on the order of 1 nm. Many drugs ...
agonist An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the ag ...
s of the TrkA and p75NTR with high affinity (around 5 nM), and hence as so-called "microneurotrophins". DHEA has also been found to bind to the TrkB and TrkC, though while it activated the TrkC, it was unable to activate the TrkB. It has been proposed that DHEA may have been the ancestral ligand of the Trk receptors early on in the
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
of the
nervous system In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes ...
, eventually being superseded by the polypeptide neurotrophins.


Role in programmed cell death

During
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
development neurotrophins play a key role in growth, differentiation, and survival. They also play an important role in the apoptotic programmed cell death (PCD) of neurons. Neurotrophic survival signals in neurons are mediated by the high-affinity binding of neurotrophins to their respective Trk receptor. In turn, a majority of neuronal apoptotic signals are mediated by neurotrophins binding to the p75NTR. The PCD which occurs during brain development is responsible for the loss of a majority of
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cell ...
s and differentiating neurons. It is necessary because during development there is a massive over production of neurons which must be killed off to attain optimal function. In the development of both the
peripheral nervous system The peripheral nervous system (PNS) is one of two components that make up the nervous system of bilateral animals, with the other part being the central nervous system (CNS). The PNS consists of nerves and ganglia, which lie outside the brai ...
(PNS) and the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
(CNS) the p75NTR-neurotrophin binding activates multiple intracellular pathways which are important in regulating apoptosis. Proneurotrophins (proNTs) are neurotrophins which are released as biologically active uncleaved pro-peptides. Unlike mature neurotrophins which bind to the p75NTR with a low affinity, proNTs preferentially bind to the p75NTR with high affinity. The p75NTR contains a death domain on its
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
ic tail which when cleaved activates an apoptotic pathway. The binding of a proNT (proNGF or proBDNF) to p75NTR and its sortilin co-receptor (which binds the pro-domain of proNTs) causes a p75NTR-dependent signal transduction cascade. The cleaved death domain of p75NTR activates
c-Jun N-terminal kinase c-Jun N-terminal kinases (JNKs), were originally identified as kinases that bind and phosphorylate c-Jun on Ser-63 and Ser-73 within its transcriptional activation domain. They belong to the mitogen-activated protein kinase family, and are res ...
(JNK). The activated JNK translocates into the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
, where it phosphorylates and transactivates
c-Jun Transcription factor Jun is a protein that in humans is encoded by the ''JUN'' gene. c-Jun, in combination with protein c-Fos, forms the AP-1 early response transcription factor. It was first identified as the Fos-binding protein p39 and only la ...
. The transactivation of c-Jun results in the transcription of pro-apoptotic factors TFF-a, Fas-L and Bak. The importance of sortilin in p75NTR-mediated apoptosis is exhibited by the fact that the inhibition of sortilin expression in neurons expressing p75NTR suppresses proNGF-mediated apoptosis, and the prevention of proBDNF binding to p75NTR and sortilin abolished apoptotic action. Activation of p75NTR-mediated apoptosis is much more effective in the absence of Trk receptors due to the fact that activated Trk receptors suppress the JNK cascade. The expression of TrkA or TrkC receptors in the absence of neurotrophins can lead to apoptosis, but the mechanism is poorly understood. The addition of NGF (for TrkA) or NT-3 (for TrkC) prevents this apoptosis. For this reason TrkA and TrkC are referred to as
dependence receptor In cellular biology, dependence receptors are proteins that mediate programmed cell death by monitoring the absence of certain trophic factors (or, equivalently, the presence of anti-trophic factors) that otherwise serve as ligands (interactors) fo ...
s, because whether they induce apoptosis or survival is dependent on the presence of neurotrophins. The expression of TrkB, which is found mainly in the CNS, does not cause apoptosis. This is thought to be because it is differentially located in the cell membrane while TrkA and TrkC are co-localized with p75NTR in lipid rafts. In the PNS (where NGF, NT-3 and
NT-4 Neurotrophin-4 (NT-4), also known as neurotrophin-5 (NT-5), is a protein that in humans is encoded by the ''NTF4'' gene. It is a neurotrophic factor that signals predominantly through the TrkB receptor tyrosine kinase Receptor tyrosine kinas ...
are mainly secreted) cell fate is determined by a single growth factor (i.e. neurotrophins). However, in the CNS (where BDNF is mainly secreted in the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
,
substantia nigra The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. ''Substantia nigra'' is Latin for "black substance", reflecting the fact that parts of the substantia nigra ap ...
,
amygdala The amygdala (; plural: amygdalae or amygdalas; also '; Latin from Greek, , ', 'almond', 'tonsil') is one of two almond-shaped clusters of nuclei located deep and medially within the temporal lobes of the brain's cerebrum in complex ver ...
,
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus ...
,
cerebellum The cerebellum (Latin for "little brain") is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as or even larger. In humans, the cerebe ...
,
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic syste ...
and cortex) more factors determine cell fate, including neural activity and
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neu ...
input. Neurotrophins in the CNS have also been shown to play a more important role in neural
cell differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular ...
and function rather than survival. For these reasons, compared to neurons in the PNS, neurons of the CNS are less sensitive to the absence of a single neurotrophin or neurotrophin receptor during development; with the exception being neurons in the
thalamus The thalamus (from Greek θάλαμος, "chamber") is a large mass of gray matter located in the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all direct ...
and
substantia nigra The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. ''Substantia nigra'' is Latin for "black substance", reflecting the fact that parts of the substantia nigra ap ...
.
Gene knockout A gene knockout (abbreviation: KO) is a genetic technique in which one of an organism's genes is made inoperative ("knocked out" of the organism). However, KO can also refer to the gene that is knocked out or the organism that carries the gene kno ...
experiments were conducted to identify the neuronal populations in both the PNS and CNS that were affected by the loss of different neurotrophins during development and the extent to which these populations were affected. These knockout experiments resulted in the loss of several neuron populations including the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which the ...
, cholinergic
brainstem The brainstem (or brain stem) is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is ...
and the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the sp ...
. It was found that NGF-knockout mice had losses of a majority of their dorsal root ganglia (DRG),
trigeminal ganglia A trigeminal ganglion (or Gasserian ganglion, or semilunar ganglion, or Gasser's ganglion) is the sensory ganglion at the base of each of the two trigeminal nerves (CN V), occupying a cavity ( Meckel's cave) in the dura mater, covering the trigem ...
and superior cervical ganglia. The viability of these mice was poor. The BDNF-knockout mice had losses of a majority of their vestibular ganglia and moderate losses of their DRG, trigeminal ganglia, nodose petrosal ganglia and cochlear ganglia. In addition they also had minor losses of their facial motoneurons located in the CNS. The viability of these mice was moderate. The NT-4-knockout mice had moderate losses of their nodose petrosal ganglia and minor losses of their DRG, trigeminal ganglia and vestibular ganglia. The NT-4-knockout mice also had minor losses of facial motoneurons. These mice were very viable. The NT-3 knockout mice had losses of a majority of their DRG, trigeminal ganglia, cochlear ganglia and superior cervical ganglia and moderate losses of nodose petrosal ganglia and vestibular ganglia. In addition the NT-3-knockout mice had moderate losses of spinal moroneurons. These mice had very poor viability. These results show that the absence of different neurotrophins result in losses of different neuron populations (mainly in the PNS). Furthermore, the absence of the neurotrophin survival signal leads to apoptosis.


See also

*
Neurotrophic electrode The neurotrophic electrode is an intracortical device designed to read the electrical signals that the brain uses to process information. It consists of a small, hollow glass cone attached to several electrically conductive gold wires. The term ' ...
*
Neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
* Programmed cell death


References


External links


DevBio.com
- 'Neurotrophin Receptors: The neurotrophin family consists of four members: nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4)' (April 4, 2003)

- 'New Clues to Neurological Diseases Discovered: Findings could lead to new treatments, two studies suggest', Steven Reinberg, '' HealthDay'' (July 5, 2006)
Helsinki.fi
- 'Neurotrophic factors' *

- Neurotrophin-3 image {{InterPro content, IPR002072 Neurochemistry Neurotrophins Programmed cell death Single-pass transmembrane proteins