HOME

TheInfoList



OR:

In
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
, a nested radical is a
radical expression In mathematics, a radicand, also known as an nth root, of a number ''x'' is a number ''r'' which, when raised to the power ''n'', yields ''x'': :r^n = x, where ''n'' is a positive integer, sometimes called the ''degree'' of the root. A ro ...
(one containing a square root sign, cube root sign, etc.) that contains (nests) another radical expression. Examples include :\sqrt, which arises in discussing the regular pentagon, and more complicated ones such as :\sqrt


Denesting

Some nested radicals can be rewritten in a form that is not nested. For example, \sqrt = 1+\sqrt\,, \sqrt = \frac \,. Rewriting a nested radical in this way is called denesting. This is not always possible, and, even when possible, it is often difficult.


Two nested square roots

In the case of two nested square roots, the following theorem completely solves the problem of denesting. If and are rational numbers and is not the square of a rational number, there are two rational numbers and such that :\sqrt = \sqrt\pm\sqrt if and only if a^2-c~ is the square of a rational number . If the nested radical is real, and are the two numbers :\frac2~ and ~\frac2~,~ where ~d=\sqrt~ is a rational number. In particular, if and are integers, then and are integers. This result includes denestings of the form :\sqrt=z\pm\sqrt~, as may always be written z=\pm\sqrt, and at least one of the terms must be positive (because the left-hand side of the equation is positive). A more general denesting formula could have the form :\sqrt = \alpha+ \beta\sqrt+\gamma\sqrt+\delta\sqrt x\sqrt y~. However, Galois theory implies that either the left-hand side belongs to \mathbb Q(\sqrt c), or it must be obtained by changing the sign of either \sqrt x, \sqrt y, or both. In the first case, this means that one can take and \gamma=\delta=0. In the second case, \alpha and another coefficient must be zero. If \beta=0, one may rename as for getting \delta=0. Proceeding similarly if \alpha=0, it results that one can suppose \alpha=\delta=0. This shows that the apparently more general denesting can always be reduced to the above one. ''Proof'': By squaring, the equation :\sqrt = \sqrt\pm\sqrt is equivalent with :a+\sqrt=x+y\pm 2\sqrt, and, in the case of a minus in the right-hand side, :, (square roots are nonnegative by definition of the notation). As the inequality may always be satisfied by possibly exchanging and , solving the first equation in and is equivalent with solving :a+\sqrt=x+y\pm 2\sqrt. This equality implies that \sqrt belongs to the quadratic field \mathbb Q(\sqrt c). In this field every element may be uniquely written \alpha +\beta\sqrt c, with \alpha and \beta being rational numbers. This implies that \pm 2\sqrt is not rational (otherwise the right-hand side of the equation would be rational; but the left-hand side is irrational). As and must be rational, the square of \pm 2\sqrt must be rational. This implies that \alpha=0 in the expression of \pm 2\sqrt as \alpha +\beta\sqrt c. Thus :a+\sqrt=x+y +\beta\sqrt for some rational number \beta. The uniqueness of the decomposition over and \sqrt c implies thus that the considered equation is equivalent with :a= x+y\quad \text\quad \pm 2\sqrt=\sqrt c. It follows by
Vieta's formulas In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta"). Basic formula ...
that and must be roots of the
quadratic equation In algebra, a quadratic equation () is any equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where represents an unknown value, and , , and represent known numbers, where . (If and then the equation is linear, not qu ...
:z^2-az+\frac c4 = 0~; its ~\Delta = a^2-c = d^2 > 0~ (≠0, otherwise would be the square of ), hence and must be :\frac~ and ~\frac~. Thus and are rational if and only if d=\sqrt~ is a rational number. For explicitly choosing the various signs, one must consider only positive real square roots, and thus assuming . The equation a^2=c+d^2 shows that . Thus, if the nested radical is real, and if denesting is possible, then . Then, the solution writes :\begin \sqrt&=\sqrt+\sqrt,\\ \sqrt&=\sqrt-\sqrt. \end


Some identities of Ramanujan

Srinivasa Ramanujan demonstrated a number of curious identities involving nested radicals. Among them are the following: \sqrt = \frac=\tfrac12\left(3+\sqrt +\sqrt5+\sqrt right), \sqrt = \tfrac13\left(\sqrt - \sqrt -1\right), \sqrt = \sqrt + \sqrt - \sqrt and


Landau's algorithm

In 1989
Susan Landau Susan Landau is an American mathematician, engineer, cybersecurity policy expert, and Bridge Professor in Cybersecurity and Policy at the Fletcher School of Law and Diplomacy at Tufts University. and She previously worked as a Senior Staff Priv ...
introduced the first
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
for deciding which nested radicals can be denested. Earlier algorithms worked in some cases but not others. Landau's algorithm involves complex roots of unity and runs in exponential time with respect to the depth of the nested radical.


In trigonometry

In
trigonometry Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. ...
, the sines and cosines of many angles can be expressed in terms of nested radicals. For example, : \sin\frac=\sin 3^\circ=\frac \left (1-\sqrt3)\sqrt+\sqrt2(\sqrt5-1)(\sqrt3+1)\right/math> and : \sin\frac=\sin 7.5^\circ=\frac \sqrt = \frac \sqrt . The last equality results directly from the results of .


In the solution of the cubic equation

Nested radicals appear in the algebraic solution of the cubic equation. Any cubic equation can be written in simplified form without a quadratic term, as :x^3+px+q=0, whose general solution for one of the roots is : x=\sqrt +\sqrt In the case in which the cubic has only one real root, the real root is given by this expression with the radicands of the cube roots being real and with the cube roots being the real cube roots. In the case of three real roots, the square root expression is an imaginary number; here any real root is expressed by defining the first cube root to be any specific complex cube root of the complex radicand, and by defining the second cube root to be the complex conjugate of the first one. The nested radicals in this solution cannot in general be simplified unless the cubic equation has at least one rational solution. Indeed, if the cubic has three irrational but real solutions, we have the '' casus irreducibilis'', in which all three real solutions are written in terms of cube roots of complex numbers. On the other hand, consider the equation :x^3-7x+6=0, which has the rational solutions 1, 2, and −3. The general solution formula given above gives the solutions :x=\sqrt + \sqrt . For any given choice of cube root and its conjugate, this contains nested radicals involving complex numbers, yet it is reducible (even though not obviously so) to one of the solutions 1, 2, or –3.


Infinitely nested radicals


Square roots

Under certain conditions infinitely nested square roots such as : x= \sqrt represent rational numbers. This rational number can be found by realizing that ''x'' also appears under the radical sign, which gives the equation : x=\sqrt. If we solve this equation, we find that ''x'' = 2 (the second solution ''x'' = −1 doesn't apply, under the convention that the positive square root is meant). This approach can also be used to show that generally, if ''n'' > 0, then : \sqrt = \tfrac12\left(1 + \sqrt \right) and is the positive root of the equation ''x''2 − ''x'' − ''n'' = 0. For ''n'' = 1, this root is the golden ratio φ, approximately equal to 1.618. The same procedure also works to obtain, if ''n'' > 1, : \sqrt = \tfrac12\left(-1 + \sqrt \right), which is the positive root of the equation ''x''2 + ''x'' − ''n'' = 0.


Nested square roots of 2

The nested square roots of 2 are a special case of the wide class of infinitely nested radicals. There are many known results that bind them to sines and cosines. For example, it has been shown that nested square roots of 2 as : R(b_k, \ldots, b_1)=\frac \sqrt where x=2 \sin(\pi b_1/4) with b_1 in ��2,2and b_i\in \ for i \neq 1, are such that R(b_k, \ldots, b_1)=\cos \theta for : \theta=\left(\frac-\frac-\frac-\frac-\cdots-\frac\right) \pi . This result allows to deduce for any x \in 2,2/math> the value of the following infinitely nested radicals consisting of k nested roots as : R_k(x)=\sqrt. If x \geq 2, then : \begin R_k(x) &=\sqrt \\ &=\left(\frac\right)^+\left(\frac\right)^ \end These results can be used to obtain some nested square roots representations of \pi . Let us consider the term R\left(b_, \ldots, b_\right) defined above. Then : \pi=\lim _\left frac R(\underbrace_)\right/math> where b_1\neq 2.


Ramanujan's infinite radicals

Ramanujan posed the following problem to the ''Journal of Indian Mathematical Society'': : ? = \sqrt. This can be solved by noting a more general formulation: : ? = \sqrt. Setting this to ''F''(''x'') and squaring both sides gives us : F(x)^2 = ax+(n+a)^2 +x\sqrt, which can be simplified to : F(x)^2 = ax+(n+a)^2 +xF(x+n) . It can then be shown that, assuming F is
analytic Generally speaking, analytic (from el, ἀναλυτικός, ''analytikos'') refers to the "having the ability to analyze" or "division into elements or principles". Analytic or analytical can also have the following meanings: Chemistry * ...
, : F(x) = . So, setting ''a'' = 0, ''n'' = 1, and ''x'' = 2, we have : 3 = \sqrt. Ramanujan stated the following infinite radical denesting in his lost notebook: :\sqrt=\frac. The repeating pattern of the signs is (+,+,-,+).


Viète's expression for

Viète's formula for , the ratio of a circle's circumference to its diameter, is :\frac2\pi= \frac2\cdot \frac2\cdot \frac2\cdots.


Cube roots

In certain cases, infinitely nested cube roots such as : x = \sqrt can represent rational numbers as well. Again, by realizing that the whole expression appears inside itself, we are left with the equation : x = \sqrt If we solve this equation, we find that ''x'' = 2. More generally, we find that : \sqrt /math> is the positive real root of the equation ''x''3 − ''x'' − ''n'' = 0 for all ''n'' > 0. For ''n'' = 1, this root is the plastic number ''ρ'', approximately equal to 1.3247. The same procedure also works to get : \sqrt as the real root of the equation ''x''3 + ''x'' − ''n'' = 0 for all ''n'' > 1.


Herschfeld's convergence theorem

An infinitely nested radical \sqrt (where all a_i are nonnegative) converges if and only if there is some M \in \mathbb R such that M \geq a_n^ for all n, or in other words \sup a_n^ <+\infty.


Proof of "if"

We observe that :\sqrt \leq \sqrt = M\sqrt<2M. Moreover, the sequence \left(\sqrt\right) is monotonically increasing. Therefore it converges, by the monotone convergence theorem.


Proof of "only if"

If the sequence \left(\sqrt\right) converges, then it is bounded. However, a_n^\le\sqrt, hence \left(a_n^\right) is also bounded.


See also

* Sum of radicals


References


Further reading

* *
Decreasing the Nesting Depth of Expressions Involving Square Roots

Simplifying Square Roots of Square Roots
* * {{mathworld, urlname=NestedRadical, title=Nested Radical Algebra