HOME

TheInfoList



OR:

Low-voltage electron microscope (LVEM) is an
electron microscope An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
which operates at accelerating voltages of a few kilo
electronvolt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
s or less. Traditional electron microscopes use accelerating voltages in the range of 10-1000 keV. Low voltage imaging in transmitted electrons is possible in many new scanning electron detector. Low cost alternative is dedicated table top low voltage transmission electron microscope. While its architecture is very similar to a conventional
transmission electron microscope Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a gr ...
, it has a few key changes that enable it to take advantage of a 5 keV electron source, but trading off many advantages of higher voltage operations, including higher resolution, possibility of X-ray microanalysis and EELS, etc... Recently a new low voltage transmission electron microscope has been introduced that operates at variable voltage ranges between 6–25 kV.


Advantages


Higher contrast

A substantial decrease of electron energy allows for a significant improvement of contrast of light elements. The comparison images below show that decreasing the acceleration voltage from 80 kV to 5 kV significantly enhances the contrast of test samples. The improved contrast is a direct result of increased electron scattering associated with a reduced accelerating voltage. LVEM brings an enhancement of imaging contrast nearly twenty times higher than for 100 kV. This is very promising for biological specimens which are composed from light elements and don't exhibit sufficient contrast in classical TEMs. Further, a relatively low mean free path (15 nm) for organic samples at 5 kV means that for samples with constant thickness, high contrast will be obtained from small variations in density. For example, for 5% contrast in the LVEM bright field image, we will only need to have a difference in density between the phases of 0.07 g/cm3. This means that the usual need to stain polymers for enhanced contrast in the TEM (typically done with
osmium Osmium (from Greek grc, ὀσμή, osme, smell, label=none) is a chemical element with the symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, ...
or ruthenium tetraoxide) may not be necessary with the low voltage electron microscopy technique.


Stain not required

The improved contrast allows for the significant reduction, or elimination, of the heavy metal
negative stain In microscopy, negative staining is an established method, often used in diagnostic microscopy, for contrasting a thin specimen with an optically opaque fluid. In this technique, the background is stained, leaving the actual specimen untouched, and ...
ing step for TEM imaging of light elements (H, C, N, O, S, P). While staining is beneficial for experiments aimed at high resolution structure determination, it is highly undesirable in certain protein sample preparations, because it could destabilize the protein sample due to its acid pH and relatively high heavy metal concentration. The addition of stain to sectioned samples such as biological materials or polymers can also introduce imaging artifacts. LVEM experiments carried out on an extracted membrane protein sample that was analyzed with and without the staining procedure show a marked improvement in the appearance of the sample when standard staining is omitted. Results show that LVEM could be even more useful than conventional EM for this particular application because it avoids the potentially disrupting staining step, thus providing an undisturbed image of the protein's aggregation state. Additionally, The ability to eliminate the staining step could aid to improve safety in the lab, as common heavy metal stains, such as
uranyl acetate Uranyl acetate is the acetate salt of uranium oxide, a toxic yellow-green powder useful in certain laboratory tests. Structurally, it is a coordination polymer with formula UO2(CH3CO2)2(H2O)·H2O. Structure In the polymer, uranyl (UO22+) ...
do have associated health risks.


Resolution

The first low-voltage electron microscopes were capable of spatial resolutions of about 2.5 nm in TEM, 2.0 nm in STEM, and 3.0 nm in SEM modes. The SEM resolution has been improved to ~1.2 nm at 800 eV by 2010, while a 0.14 nm TEM resolution at 15 keV has been reported in 2016.


Limitations

Currently available low voltage microscopes are only able to obtain resolutions of 1.0–3 nanometers. While this is well beyond resolutions possible from optical (light) microscopes, they are not yet able to compete with the atomic resolution obtainable from conventional (higher voltage) electron microscopes. Low voltage limits the maximum thickness of samples which can be studied in the TEM or STEM mode. Whereas it is about 50-90 nm in conventional TEM, it decreases to around 20–65 nanometers for LVEM @ 5 kV. However, thicknesses of the order of 20 nm or less are required to attain the maximal resolution in the TEM and STEM modes 5 kV.. These thickness are sometimes achievable with the use of an
ultramicrotome A microtome (from the Greek ''mikros'', meaning "small", and ''temnein'', meaning "to cut") is a cutting tool used to produce extremely thin slices of material known as ''sections''. Important in science, microtomes are used in microscopy, allow ...
. in 2015 these limitations were overcome with a 25 kV low voltage electron microscope that can produce high quality results with thin sectioned samples up to around 100 nm+.


See also

*
Electron microscope An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
*
Transmission electron microscope Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a gr ...
(TEM) *
High-resolution transmission electron microscopy High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. It is a powerful tool to study properties of materials on the a ...
(HRTEM) * Scanning electron microscope (SEM) * Scanning transmission electron microscope (STEM) *
Low-energy electron microscopy Low-energy electron microscopy, or LEEM, is an analytical surface science technique used to image atomically clean surfaces, atom-surface interactions, and thin (crystalline) films. In LEEM, high-energy electrons (15-20 keV) are emitted from an e ...
(LEEM) *
Electron diffraction Electron diffraction refers to the bending of electron beams around atomic structures. This behaviour, typical for waves, is applicable to electrons due to the wave–particle duality stating that electrons behave as both particles and waves. S ...
*
Low-energy electron diffraction Low-energy electron diffraction (LEED) is a technique for the determination of the surface structure of single-crystalline materials by bombardment with a collimated beam of low-energy electrons (30–200 eV) and observation of diffracted el ...
(LEED)


Application areas

LVEM is especially efficient for the following applications. *
Antibodies An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of ...
*
Cell biology Cell biology (also cellular biology or cytology) is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living an ...
*
Drug discovery In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or b ...
*
Education Education is a purposeful activity directed at achieving certain aims, such as transmitting knowledge or fostering skills and character traits. These aims may include the development of understanding, rationality, kindness, and honesty ...
*
Histology Histology, also known as microscopic anatomy or microanatomy, is the branch of biology which studies the microscopic anatomy of biological tissues. Histology is the microscopic counterpart to gross anatomy, which looks at larger structures v ...
* Materials science *
Nanomedicine Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotech ...
*
Nanoparticles A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
* Nanotubes *
Pathology Pathology is the study of the causes and effects of disease or injury. The word ''pathology'' also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in ...
*
Polymers A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
*
Proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
*Tissue samples *
Toxicology Toxicology is a scientific discipline, overlapping with biology, chemistry, pharmacology, and medicine, that involves the study of the adverse effects of chemical substances on living organisms and the practice of diagnosing and treating e ...
*
Viruses A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's ...


References


External links


WENDMANs VIEWS on NANOTECH BlogLVEM5 low voltage electron microscope from Delong America
{{DEFAULTSORT:Low Voltage Electron Microscope Electron microscopy Scientific techniques