HOME

TheInfoList



OR:

In mathematics, low-dimensional topology is the branch of topology that studies
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
s, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of
3-manifold In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds lo ...
s and 4-manifolds,
knot theory In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot ...
, and
braid group A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-strande ...
s. This can be regarded as a part of
geometric topology In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topology may be said to have originated ...
. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of
continuum theory In the mathematical field of point-set topology, a continuum (plural: "continua") is a nonempty compact connected metric space, or, less frequently, a compact connected Hausdorff space. Continuum theory is the branch of topology devoted to the stu ...
.


History

A number of advances starting in the 1960s had the effect of emphasising low dimensions in topology. The solution by Stephen Smale, in 1961, of the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by H ...
in five or more dimensions made dimensions three and four seem the hardest; and indeed they required new methods, while the freedom of higher dimensions meant that questions could be reduced to computational methods available in surgery theory. Thurston's geometrization conjecture, formulated in the late 1970s, offered a framework that suggested geometry and topology were closely intertwined in low dimensions, and Thurston's proof of geometrization for
Haken manifold In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in whi ...
s utilized a variety of tools from previously only weakly linked areas of mathematics.
Vaughan Jones Sir Vaughan Frederick Randal Jones (31 December 19526 September 2020) was a New Zealand mathematician known for his work on von Neumann algebras and knot polynomials. He was awarded a Fields Medal in 1990. Early life Jones was born in Gisb ...
' discovery of the Jones polynomial in the early 1980s not only led knot theory in new directions but gave rise to still mysterious connections between low-dimensional topology and mathematical physics. In 2002,
Grigori Perelman Grigori Yakovlevich Perelman ( rus, links=no, Григорий Яковлевич Перельман, p=ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman, a=Ru-Grigori Yakovlevich Perelman.oga; born 13 June 1966) is a Russian mathemati ...
announced a proof of the three-dimensional Poincaré conjecture, using
Richard S. Hamilton Richard Streit Hamilton (born 10 January 1943) is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilt ...
's
Ricci flow In the mathematical fields of differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be an ...
, an idea belonging to the field of geometric analysis. Overall, this progress has led to better integration of the field into the rest of mathematics.


Two dimensions

A surface is a two-dimensional, topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3—for example, the surface of a
ball A ball is a round object (usually spherical, but can sometimes be ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used fo ...
. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.


Classification of surfaces

The ''classification theorem of closed surfaces'' states that any
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
surface is homeomorphic to some member of one of these three families: # the sphere; # the
connected sum In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classifica ...
of ''g'' tori, for g \geq 1; # the connected sum of ''k''
real projective plane In mathematics, the real projective plane is an example of a compact non- orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has b ...
s, for k \geq 1. The surfaces in the first two families are
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
. It is convenient to combine the two families by regarding the sphere as the connected sum of 0 tori. The number ''g'' of tori involved is called the ''genus'' of the surface. The sphere and the torus have Euler characteristics 2 and 0, respectively, and in general the Euler characteristic of the connected sum of ''g'' tori is . The surfaces in the third family are nonorientable. The Euler characteristic of the real projective plane is 1, and in general the Euler characteristic of the connected sum of ''k'' of them is .


Teichmüller space

In mathematics, the Teichmüller space ''TX'' of a (real) topological surface ''X'', is a space that parameterizes complex structures on ''X'' up to the action of
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorph ...
s that are isotopic to the identity homeomorphism. Each point in ''TX'' may be regarded as an isomorphism class of 'marked' Riemann surfaces where a 'marking' is an isotopy class of homeomorphisms from ''X'' to ''X''. The Teichmüller space is the universal covering orbifold of the (Riemann) moduli space. Teichmüller space has a canonical
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a ...
structure and a wealth of natural metrics. The underlying topological space of Teichmüller space was studied by Fricke, and the Teichmüller metric on it was introduced by .


Uniformization theorem

In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of the three domains: the open
unit disk In mathematics, the open unit disk (or disc) around ''P'' (where ''P'' is a given point in the plane), is the set of points whose distance from ''P'' is less than 1: :D_1(P) = \.\, The closed unit disk around ''P'' is the set of points whose ...
, the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by th ...
, or the Riemann sphere. In particular it admits a Riemannian metric of
constant curvature In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry. The sectional curvature ...
. This classifies Riemannian surfaces as elliptic (positively curved—rather, admitting a constant positively curved metric), parabolic (flat), and hyperbolic (negatively curved) according to their universal cover. The uniformization theorem is a generalization of the Riemann mapping theorem from proper simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.


Three dimensions

A
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
''X'' is a 3-manifold if every point in ''X'' has a neighbourhood that is homeomorphic to Euclidean 3-space. The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds. Phenomena in three dimensions can be strikingly different from phenomena in other dimensions, and so there is a prevalence of very specialized techniques that do not generalize to dimensions greater than three. This special role has led to the discovery of close connections to a diversity of other fields, such as
knot theory In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot ...
, geometric group theory, hyperbolic geometry, number theory,
Teichmüller theory Teichmüller is a German surname ( German for ''pond miller'') and may refer to: * Anna Teichmüller (1861–1940), German composer * :de:Frank Teichmüller (19?? – now), former German IG Metall district manager "coast" * Gustav Teichmüller (1 ...
,
topological quantum field theory In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathem ...
, gauge theory, Floer homology, and partial differential equations. 3-manifold theory is considered a part of low-dimensional topology or
geometric topology In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topology may be said to have originated ...
.


Knot and braid theory

Knot theory In the mathematical field of topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot ...
is the study of
mathematical knot In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, (also known as ). Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of ...
s. While inspired by knots that appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined together so that it cannot be undone. In mathematical language, a knot is an embedding of a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is con ...
in 3-dimensional Euclidean space, R3 (since we're using topology, a circle isn't bound to the classical geometric concept, but to all of its
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorph ...
s). Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R3 upon itself (known as an
ambient isotopy In the mathematical subject of topology, an ambient isotopy, also called an ''h-isotopy'', is a kind of continuous distortion of an ambient space, for example a manifold, taking a submanifold to another submanifold. For example in knot theory, on ...
); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself. Knot complements are frequently-studied 3-manifolds. The knot complement of a tame knot ''K'' is the three-dimensional space surrounding the knot. To make this precise, suppose that ''K'' is a knot in a three-manifold ''M'' (most often, ''M'' is the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensi ...
). Let ''N'' be a
tubular neighborhood In mathematics, a tubular neighborhood of a submanifold of a smooth manifold is an open set around it resembling the normal bundle. The idea behind a tubular neighborhood can be explained in a simple example. Consider a smooth curve in the ...
of ''K''; so ''N'' is a solid torus. The knot complement is then the
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class ...
of ''N'', :X_K = M - \mbox(N). A related topic is
braid theory A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-strande ...
. Braid theory is an abstract geometric theory studying the everyday
braid A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-strande ...
concept, and some generalizations. The idea is that braids can be organized into
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
s, in which the group operation is 'do the first braid on a set of strings, and then follow it with a second on the twisted strings'. Such groups may be described by explicit
presentation A presentation conveys information from a speaker to an audience. Presentations are typically demonstrations, introduction, lecture, or speech meant to inform, persuade, inspire, motivate, build goodwill, or present a new idea/product. Presenta ...
s, as was shown by . For an elementary treatment along these lines, see the article on
braid group A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-strande ...
s. Braid groups may also be given a deeper mathematical interpretation: as the fundamental group of certain configuration spaces.


Hyperbolic 3-manifolds

A hyperbolic 3-manifold is a
3-manifold In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds lo ...
equipped with a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
Riemannian metric of constant
sectional curvature In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a p ...
-1. In other words, it is the quotient of three-dimensional hyperbolic space by a subgroup of hyperbolic isometries acting freely and properly discontinuously. See also
Kleinian model In mathematics, a Kleinian model is a model of a three-dimensional hyperbolic manifold ''N'' by the quotient space \mathbb^3 / \Gamma where \Gamma is a discrete subgroup of PSL(2,C). Here, the subgroup \Gamma, a Kleinian group, is defined so ...
. Its thick-thin decomposition has a thin part consisting of tubular neighborhoods of closed geodesics and/or ends that are the product of a Euclidean surface and the closed half-ray. The manifold is of finite volume if and only if its thick part is compact. In this case, the ends are of the form torus cross the closed half-ray and are called cusps. Knot complements are the most commonly studied cusped manifolds.


Poincaré conjecture and geometrization

Thurston's geometrization conjecture In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensi ...
states that certain three-dimensional
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...
s each have a unique geometric structure that can be associated with them. It is an analogue of the
uniformization theorem In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization ...
for two-dimensional surfaces, which states that every
simply-connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the spac ...
Riemann surface can be given one of three geometries ( Euclidean, spherical, or
hyperbolic Hyperbolic is an adjective describing something that resembles or pertains to a hyperbola (a curve), to hyperbole (an overstatement or exaggeration), or to hyperbolic geometry. The following phenomena are described as ''hyperbolic'' because they ...
). In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed
3-manifold In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds lo ...
can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by , and implies several other conjectures, such as the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by H ...
and Thurston's elliptization conjecture.


Four dimensions

A 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds that admit no smooth structure and even if there exists a smooth structure it need not be unique (i.e. there are smooth 4-manifolds that are homeomorphic but not diffeomorphic). 4-manifolds are of importance in physics because, in General Relativity, spacetime is modeled as a
pseudo-Riemannian In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the r ...
4-manifold.


Exotic R4

An exotic R4 is a
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One m ...
that is homeomorphic but not diffeomorphic to the Euclidean space R4. The first examples were found in the early 1980s by Michael Freedman, by using the contrast between Freedman's theorems about topological 4-manifolds, and Simon Donaldson's theorems about smooth 4-manifolds. There is a continuum of non-diffeomorphic differentiable structures of R4, as was shown first by
Clifford Taubes Clifford Henry Taubes (born February 21, 1954) is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology. His brother is the journalist Gary Taub ...
. Prior to this construction, non-diffeomorphic smooth structures on spheres— exotic spheres—were already known to exist, although the question of the existence of such structures for the particular case of the
4-sphere In mathematics, an -sphere or a hypersphere is a topological space that is homeomorphic to a ''standard'' -''sphere'', which is the set of points in -dimensional Euclidean space that are situated at a constant distance from a fixed point, cal ...
remained open (and still remains open as of 2018). For any positive integer ''n'' other than 4, there are no exotic smooth structures on R''n''; in other words, if ''n'' ≠ 4 then any smooth manifold homeomorphic to R''n'' is diffeomorphic to R''n''.Corollary 5.2 of .


Other special phenomena in four dimensions

There are several fundamental theorems about manifolds that can be proved by low-dimensional methods in dimensions at most 3, and by completely different high-dimensional methods in dimension at least 5, but which are false in four dimensions. Here are some examples: * In dimensions other than 4, the Kirby–Siebenmann invariant provides the obstruction to the existence of a PL structure; in other words a compact topological manifold has a PL structure if and only if its Kirby–Siebenmann invariant in H4(''M'',Z/2Z) vanishes. In dimension 3 and lower, every topological manifold admits an essentially unique PL structure. In dimension 4 there are many examples with vanishing Kirby–Siebenmann invariant but no PL structure. * In any dimension other than 4, a compact topological manifold has only a finite number of essentially distinct PL or smooth structures. In dimension 4, compact manifolds can have a countable infinite number of non-diffeomorphic smooth structures. * Four is the only dimension ''n'' for which R''n'' can have an exotic smooth structure. R4 has an uncountable number of exotic smooth structures; see exotic R4. * The solution to the smooth
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by H ...
is known in all dimensions other than 4 (it is usually false in dimensions at least 7; see exotic sphere). The Poincaré conjecture for
PL manifold PL, P.L., Pl, or .pl may refer to: Businesses and organizations Government and political * Partit Laburista, a Maltese political party * Liberal Party (Brazil, 2006), a Brazilian political party * Liberal Party (Moldova), a Moldovan political pa ...
s has been proved for all dimensions other than 4, but it is not known whether it is true in 4 dimensions (it is equivalent to the smooth Poincaré conjecture in 4 dimensions). * The smooth h-cobordism theorem holds for cobordisms provided that neither the cobordism nor its boundary has dimension 4. It can fail if the boundary of the cobordism has dimension 4 (as shown by Donaldson). If the cobordism has dimension 4, then it is unknown whether the h-cobordism theorem holds. * A topological manifold of dimension not equal to 4 has a handlebody decomposition. Manifolds of dimension 4 have a handlebody decomposition if and only if they are smoothable. * There are compact 4-dimensional topological manifolds that are not homeomorphic to any simplicial complex. In dimension at least 5 the existence of topological manifolds not homeomorphic to a simplicial complex was an open problem. In 2013, Ciprian Manolescu posted a preprint on the ArXiv showing that there are manifolds in each dimension greater than or equal to 5, that are not homeomorphic to a simplicial complex.


A few typical theorems that distinguish low-dimensional topology

There are several theorems that in effect state that many of the most basic tools used to study high-dimensional manifolds do not apply to low-dimensional manifolds, such as: Steenrod's theorem states that an orientable 3-manifold has a trivial tangent bundle. Stated another way, the only
characteristic class In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classe ...
of a 3-manifold is the obstruction to orientability. Any closed 3-manifold is the boundary of a 4-manifold. This theorem is due independently to several people: it follows from the DehnLickorish theorem via a
Heegaard splitting In the mathematical field of geometric topology, a Heegaard splitting () is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Definitions Let ''V'' and ''W'' be handlebodies of genus ''g'', an ...
of the 3-manifold. It also follows from René Thom's computation of the
cobordism In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (French '' bord'', giving ''cobordism'') of a manifold. Two manifolds of the same d ...
ring of closed manifolds. The existence of exotic smooth structures on R4. This was originally observed by Michael Freedman, based on the work of Simon Donaldson and
Andrew Casson Andrew John Casson FRS (born 1943) is a mathematician, studying geometric topology. Casson is the Philip Schuyler Beebe Professor of Mathematics at Yale University. Education and Career Casson was educated at Latymer Upper School and Trinity Col ...
. It has since been elaborated by Freedman,
Robert Gompf The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' ( non, Hróðr) "fame, glory, honou ...
,
Clifford Taubes Clifford Henry Taubes (born February 21, 1954) is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology. His brother is the journalist Gary Taub ...
and Laurence Taylor to show there exists a continuum of non-diffeomorphic smooth structures on R4. Meanwhile, Rn is known to have exactly one smooth structure up to diffeomorphism provided ''n'' ≠ 4.


See also

*
List of geometric topology topics This is a list of geometric topology topics, by Wikipedia page. See also: * topology glossary * List of topology topics * List of general topology topics * List of algebraic topology topics * Publications in topology Low-dimensional topology Knot ...


References


External links

* Rob Kirby'
Problems in Low-Dimensional Topology
zipped postscript file (1.4 MB) * Mark Brittenham'

ists of homepages, conferences, etc. {{Topology Geometric topology