HOME

TheInfoList



OR:

Lipid metabolism is the synthesis and degradation of
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids includ ...
s in cells, involving the breakdown or storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
s. In animals, these fats are obtained from food or are synthesized by the
liver The liver is a major organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it ...
. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are
triglycerides A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids (from ''tri-'' and '' glyceride''). Triglycerides are the main constituents of body fat in humans and other vertebrates, a ...
and
cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell mem ...
. Other types of lipids found in the body are
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is ...
s and membrane lipids. Lipid metabolism is often considered as the
digestion Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small intes ...
and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat.
Vertebrates Vertebrates () comprise all animal taxon, taxa within the subphylum Vertebrata () (chordates with vertebral column, backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the ...
(including humans) use both sources of fat to produce
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of h ...
for organs such as the
heart The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxid ...
to function. Since lipids are
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and ...
molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolys ...
, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the
epithelial cells Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellul ...
of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.


Lipid digestion

Digestion Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small intes ...
is the first step to lipid metabolism, and it is the process of breaking the triglycerides down into smaller
monoglyceride Monoglycerides (also: acylglycerols or monoacylglycerols) are a class of glycerides which are composed of a molecule of glycerol linked to a fatty acid via an ester bond. As glycerol contains both primary and secondary alcohol groups two diffe ...
units with the help of
lipase Lipase ( ) is a family of enzymes that catalyzes the hydrolysis of fats. Some lipases display broad substrate scope including esters of cholesterol, phospholipids, and of lipid-soluble vitamins and sphingomyelinases; however, these are usually t ...
enzymes. Digestion of fats begin in the mouth through chemical digestion by
lingual lipase Lingual lipase is a member of a family of digestive enzymes called triacylglycerol lipases, EC 3.1.1.3, that use the catalytic triad of aspartate, histidine, and serine to hydrolyze medium and long-chain triglycerides into partial glycerides a ...
. Ingested cholesterol is not broken down by the lipases and stays intact until it enters the epithelium cells of the small intestine. Lipids then continue to the stomach where chemical digestion continues by
gastric lipase The stomach is a muscular, hollow organ in the gastrointestinal tract of humans and many other animals, including several invertebrates. The stomach has a dilated structure and functions as a vital organ in the digestive system. The stomach is ...
and mechanical digestion begins (
peristalsis Peristalsis ( , ) is a radially symmetrical contraction and relaxation of muscles that propagate in a wave down a tube, in an anterograde direction. Peristalsis is progression of coordinated contraction of involuntary circular muscles, whic ...
). The majority of lipid digestion and absorption, however, occurs once the fats reach the small intestines. Chemicals from the pancreas (
pancreatic lipase family Triglyceride lipases () are a family of lipolytic enzymes that hydrolyse ester linkages of triglycerides. Lipases are widely distributed in animals, plants and prokaryotes. At least three tissue-specific isozymes exist in higher vertebrates, p ...
and
bile salt-dependent lipase Bile salt-dependent lipase (or BSDL), also known as carboxyl ester lipase (or CEL) is an enzyme produced by the adult pancreas and aids in the digestion of fats. Bile salt-stimulated lipase (or BSSL) is an equivalent enzyme found within breast mil ...
) are secreted into the small intestines to help breakdown the triglycerides, along with further mechanical digestion, until they are individual
fatty acid In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is ...
units able to be absorbed into the small intestine's
epithelial cells Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellul ...
. It is the pancreatic lipase that is responsible for signaling for the
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolys ...
of the triglycerides into separate free fatty acids and glycerol units.


Lipid absorption

The second step in lipid metabolism is absorption of fats. Short chain fatty acids can be absorbed in the
stomach The stomach is a muscular, hollow organ in the gastrointestinal tract of humans and many other animals, including several invertebrates. The stomach has a dilated structure and functions as a vital organ in the digestive system. The stomac ...
, while most absorption of fats occurs only in the
small intestine The small intestine or small bowel is an organ in the gastrointestinal tract where most of the absorption of nutrients from food takes place. It lies between the stomach and large intestine, and receives bile and pancreatic juice through ...
s. Once the triglycerides are broken down into individual fatty acids and
glycerol Glycerol (), also called glycerine in British English and glycerin in American English, is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids know ...
s, along with cholesterol, they will aggregate into structures called
micelle A micelle () or micella () (plural micelles or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension (also known as associated coll ...
s. Fatty acids and monoglycerides leave the micelles and diffuse across the membrane to enter the intestinal epithelial cells. In the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochond ...
of epithelial cells, fatty acids and monoglycerides are recombined back into triglycerides. In the cytosol of epithelial cells, triglycerides and cholesterol are packaged into bigger particles called
chylomicron Chylomicrons (from the Greek χυλός, chylos, meaning ''juice'' (of plants or animals), and micron, meaning ''small particle''), also known as ultra low-density lipoproteins (ULDL), are lipoprotein particles that consist of triglycerides (85 ...
s which are
amphipathic An amphiphile (from the Greek αμφις amphis, both, and φιλíα philia, love, friendship), or amphipath, is a chemical compound possessing both hydrophilic (''water-loving'', polar) and lipophilic (''fat-loving'') properties. Such a com ...
structures that transport digested lipids. Chylomicrons will travel through the bloodstream to enter adipose and other tissues in the body.


Lipid transportation

Due to the hydrophobic nature of membrane lipids, triglycerides and
cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell mem ...
s, they require special transport proteins known as lipoproteins. The amphipathic structure of lipoproteins allows the triglycerols and cholesterol to be transported through the
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in th ...
. Chylomicrons are one sub-group of lipoproteins which carry the digested lipids from small intestine to the rest of the body. The varying densities between the types of lipoproteins are characteristic to what type of fats they transport. For example, very-low-density lipoproteins ( VLDL) carry the synthesized triglycerides by our body and
low-density lipoprotein Low-density lipoprotein (LDL) is one of the five major groups of lipoprotein that transport all fat molecules around the body in extracellular water. These groups, from least dense to most dense, are chylomicrons (aka ULDL by the overall dens ...
s (LDL) transport cholesterol to our peripheral tissues. A number of these lipoproteins are synthesized in the liver, but not all of them originate from this organ.


Lipid storage

Lipids are stored in
white adipose tissue White adipose tissue or white fat is one of the two types of adipose tissue found in mammals. The other kind is brown adipose tissue. White adipose tissue is composed of monolocular adipocytes. In humans, the healthy amount of white adipose t ...
as triglycerides. In a lean young adult human, the mass of triglycerides stored represents about 10–20 kilograms. Triglycerides are formed from a backbone of glycerol with three fatty acids. Free fatty acids are activated into acyl-CoA and esterified to finally reach the triglyceride droplet. Lipoprotein lipase has an important role.


Lipid catabolism

Once the chylomicrons (or other lipoproteins) travel through the tissues, these particles will be broken down by
lipoprotein A lipoprotein is a biochemical assembly whose primary function is to transport hydrophobic lipid (also known as fat) molecules in water, as in blood plasma or other extracellular fluids. They consist of a triglyceride and cholesterol center, sur ...
lipase in the luminal surface of
endothelial cells The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the ve ...
in
capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
to release triglycerides. Triglycerides will get broken down into fatty acids and glycerol before entering cells and remaining cholesterol will again travel through the blood to the liver. In the cytosol of the cell (for example a muscle cell), the
glycerol Glycerol (), also called glycerine in British English and glycerin in American English, is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids know ...
will be converted to
glyceraldehyde 3-phosphate Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms.Nelson, D ...
, which is an intermediate in the
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NA ...
, to get further oxidized and produce energy. However, the main steps of fatty acids
catabolism Catabolism () is the set of metabolic pathways that breaks down molecules into smaller units that are either oxidized to release energy or used in other anabolic reactions. Catabolism breaks down large molecules (such as polysaccharides, li ...
occur in the
mitochondria A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is u ...
. Long chain fatty acids (more than 14 carbon) need to be converted to fatty acyl-CoA in order to pass across the mitochondria
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
. Fatty acid catabolism begins in the cytoplasm of
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
s as acyl-CoA synthetase uses the energy from cleavage of an ATP to catalyze the addition of
coenzyme A Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a subs ...
to the fatty acid. The resulting
acyl-CoA Acyl-CoA is a group of coenzymes that metabolize fatty acids. Acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this w ...
cross the mitochondria membrane and enter the process of
beta oxidation In biochemistry and metabolism, beta-oxidation is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citric acid c ...
. The main products of the beta oxidation pathway are
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized fo ...
(which is used in the
citric acid cycle The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and protein ...
to produce energy), NADH and FADH. The process of beta oxidation requires the following enzymes: acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. The diagram to the left shows how fatty acids are converted into acetyl-CoA. The overall net reaction, using palmitoyl-CoA (16:0) as a model substrate is: : 7 FAD + 7 NAD+ + 7 CoASH + 7 H2O + H(CH2CH2)7CH2CO-SCoA → 8 CH3CO-SCoA + 7 FADH2 + 7 NADH + 7 H+


Lipid biosynthesis

In addition to dietary fats, storage lipids stored in the
adipose tissue Adipose tissue, body fat, or simply fat is a loose connective tissue composed mostly of adipocytes. In addition to adipocytes, adipose tissue contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular ...
s are one of the main sources of energy for living organisms. Triacylglycerols, lipid membrane and cholesterol can be synthesized by the organisms through various pathways.


Membrane lipid biosynthesis

There are two major classes of membrane lipids:
glycerophospholipid Glycerophospholipids or phosphoglycerides are glycerol-based phospholipids. They are the main component of biological membranes. Two major classes are known: those for bacteria and eukaryotes and a separate family for archaea. Structures The ...
s and
sphingolipid Sphingolipids are a class of lipids containing a backbone of sphingoid bases, a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx because ...
s. Although many different membrane lipids are synthesized in our body, pathways share the same pattern. The first step is synthesizing the backbone (
sphingosine Sphingosine (2-amino-4-trans-octadecene-1,3-diol) is an 18-carbon amino alcohol with an unsaturated hydrocarbon chain, which forms a primary part of sphingolipids, a class of cell membrane lipids that include sphingomyelin, an important phospholi ...
or
glycerol Glycerol (), also called glycerine in British English and glycerin in American English, is a simple triol compound. It is a colorless, odorless, viscous liquid that is sweet-tasting and non-toxic. The glycerol backbone is found in lipids know ...
), the second step is the addition of fatty acids to the backbone to make phosphatidic acid.
Phosphatidic acid Phosphatidic acids are anionic phospholipids important to cell signaling and direct activation of lipid-gated ion channels. Hydrolysis of phosphatidic acid gives rise to one molecule each of glycerol and phosphoric acid and two molecules of fatty ...
is further modified with the attachment of different hydrophilic head groups to the backbone. Membrane lipid biosynthesis occurs in the endoplasmic reticulum membrane.


Triglyceride biosynthesis

The phosphatidic acid is also a precursor for triglyceride biosynthesis. Phosphatidic acid phosphotase catalyzes the conversion of phosphatidic acid to diacylglyceride, which will be converted to triacylglyceride by
acyltransferase Acyltransferase is a type of transferase enzyme that acts upon acyl groups. Examples include: * Glyceronephosphate O-acyltransferase * Lecithin-cholesterol acyltransferase *Long-chain-alcohol O-fatty-acyltransferase See also * Acetyltransferase ...
. Triglyceride biosynthesis occurs in the cytosol.


Fatty acid biosynthesis

The precursor for fatty acids is
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized fo ...
and it occurs in the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochond ...
of the cell. The overall net reaction, using palmitate (16:0) as a model substrate is: 8 Acetyl-coA + 7 ATP + 14 NADPH + 6H+ → palmitate + 14 NADP+ + 6H2O + 7ADP + 7P¡


Cholesterol biosynthesis

Cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell mem ...
can be made from
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized fo ...
through a multiple-step pathway known as isoprenoid pathway. Cholesterols are essential because they can be modified to form different
hormone A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
s in the body such as
progesterone Progesterone (P4) is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens and is the major ...
. 70% of cholesterol biosynthesis occurs in the cytosol of liver cells.


Lipid metabolism disorders

Lipid metabolism disorders (including inborn errors of lipid metabolism) are illnesses where trouble occurs in breaking down or synthesizing fats (or fat-like substances). Lipid metabolism disorders are associated with an increase in the concentrations of plasma lipids in the blood such as
LDL cholesterol Low-density lipoprotein (LDL) is one of the five major groups of lipoprotein that transport all fat molecules around the body in extracellular water. These groups, from least dense to most dense, are chylomicrons (aka ULDL by the overall densi ...
, VLDL, and
triglyceride A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids (from ''tri-'' and '' glyceride''). Triglycerides are the main constituents of body fat in humans and other vertebrates, as ...
s which most commonly lead to cardiovascular diseases. A good deal of the time these disorders are hereditary, meaning it's a condition that is passed along from parent to child through their genes.
Gaucher's disease Gaucher's disease or Gaucher disease () (GD) is a genetic disorder in which glucocerebroside (a sphingolipid, also known as glucosylceramide) accumulates in cells and certain organs. The disorder is characterized by bruising, fatigue, anemia, low ...
(types I, II, and III),
Niemann–Pick disease Niemann–Pick disease is a group of severe inherited metabolic disorders, in which sphingomyelin accumulates in lysosomes in cells (the lysosomes normally degrade material that comes from out of cells). These disorders involve the dysfunctiona ...
,
Tay–Sachs disease Tay–Sachs disease is a genetic disorder that results in the destruction of nerve cells in the brain and spinal cord. The most common form is infantile Tay–Sachs disease, which becomes apparent around three to six months of age, with the baby ...
, and
Fabry's disease Fabry disease, also known as Anderson–Fabry disease, is a rare genetic disease that can affect many parts of the body, including the kidneys, heart, and skin. Fabry disease is one of a group of conditions known as lysosomal storage diseases. T ...
are all diseases where those afflicted can have a disorder of their body's lipid metabolism. Rarer diseases concerning a disorder of the lipid metabolism are
sitosterolemia Sitosterolemia is a rare autosomal recessively inherited lipid metabolic disorder. It is characterized by hyperabsorption and decreased biliary excretion of dietary sterols (including the plant phytosterol beta-sitosterol). Healthy persons abso ...
, Wolman's disease,
Refsum's disease Refsum disease is an autosomal recessive neurological disease that results in the over-accumulation of phytanic acid in cells and tissues. It is one of several disorders named after Norwegian neurologist Sigvald Bernhard Refsum (1907–1991). Ref ...
, and
cerebrotendinous xanthomatosis Cerebrotendinous xanthomatosis, also called cerebral cholesterosis, is an autosomal recessive form of xanthomatosis. It falls within a group of genetic disorders called the leukodystrophies. Presentation An inherited disorder associated with the ...
.


Types of lipids

The types of lipids involved in lipid metabolism include: * Membrane lipids: **
Phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipi ...
s: Phospholipids are a major component of the lipid bilayer of the cell membrane and are found in many parts of the body. **
Sphingolipid Sphingolipids are a class of lipids containing a backbone of sphingoid bases, a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx because ...
s: Sphingolipids are mostly found in the cell membrane of neural tissue. **
Glycolipid Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the conne ...
s: The main role of glycolipids is to maintain lipid bilayer stability and facilitate cell recognition. **
Glycerophospholipid Glycerophospholipids or phosphoglycerides are glycerol-based phospholipids. They are the main component of biological membranes. Two major classes are known: those for bacteria and eukaryotes and a separate family for archaea. Structures The ...
s: Neural tissue (including the brain) contains high amounts of glycerophospholipids. * Other types of lipids: **
Cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell mem ...
s: Cholesterols are the main precursors for different hormones in our body such as progesterone and testosterone. The main function of cholesterol is controlling the cell membrane fluidity. **
Steroid A steroid is a biologically active organic compound with four rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes that alter membrane fluidity; and ...
– see also
steroidogenesis A steroid is a biologically active organic compound with four rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes that alter membrane fluidity; and ...
: Steroids are one of the important cell signaling molecules. **
Triacylglycerol A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids (from ''tri-'' and '' glyceride''). Triglycerides are the main constituents of body fat in humans and other vertebrates, a ...
s (fats) – see also
lipolysis Lipolysis is the metabolic pathway through which lipid triglycerides are hydrolyzed into a glycerol and free fatty acids. It is used to mobilize stored energy during fasting or exercise, and usually occurs in fat adipocytes. The most importa ...
and
lipogenesis In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride synth ...
: Triacylglycerides are the major form of energy storage in human body. **
Fatty acids In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, f ...
– see also
fatty acid metabolism Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processe ...
: Fatty acids are one of the precursors used for lipid membrane and cholesterol biosynthesis. They are also used for energy. ** Bile salts: Bile salts are secreted from liver and they facilitate lipid digestion in the small intestine. **
Eicosanoid Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a su ...
s: Eicosanoids are made from fatty acids in the body and they are used for
cell signaling In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
. **
Ketone bodies Ketone bodies are water-soluble molecules that contain the ketone groups produced from fatty acids by the liver ( ketogenesis). Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acet ...
: Ketone bodies are made from fatty acids in the liver. Their function is to produce energy during periods of starvation or low food intake.


References

{{Authority control Lipids Metabolism