HOME

TheInfoList




Lead is a
chemical element In chemistry, an element is a pure Chemical substance, substance consisting only of atoms that all have the same numbers of protons in their atomic nucleus, nuclei. Unlike chemical compounds, chemical elements cannot be broken down into simp ...
with the
symbol A symbol is a mark, sign, or that indicates, signifies, or is understood as representing an , , or . Symbols allow people to go beyond what is n or seen by creating linkages between otherwise very different s and s. All (and ) is achieved th ...
Pb (from the
Latin Latin (, or , ) is a classical language A classical language is a language A language is a structured system of communication Communication (from Latin ''communicare'', meaning "to share" or "to be in relation with") is "an appa ...

Latin
) and
atomic number 300px, The Rutherford–Bohr model of the hydrogen atom () or a hydrogen-like ion (). In this model it is an essential feature that the photon energy (or frequency) of the electromagnetic radiation emitted (shown) when an electron jumps from one ...
82. It is a
heavy metal Heavy metal may refer to: *Heavy metals, a loose category of relatively dense metals and metalloids **Toxic heavy metal, any heavy metal chemical element of environmental concern *Heavy metal music, a genre of rock music **Heavy metal genres *Hea ...
that is
denser
denser
than most common materials. Lead is soft and
malleable Ductility is a mechanical property commonly described as a material's amenability to drawing Drawing is a form of visual art in which an artist uses instruments to mark paper Paper is a thin sheet material produced by mechanically a ...
, and also has a relatively low
melting point The melting point (or, rarely, liquefaction point) of a substance is the at which it changes from to . At the melting point the solid and liquid phase exist in . The melting point of a substance depends on and is usually specified at a such ...

melting point
. When freshly cut, lead is silvery with a hint of blue; it
tarnish Tarnish is a thin layer of corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable form such as oxide of rutile. Ti(IV) centers are grey; oxygen centers are red. Notice that oxygen forms three bonds ...
es to a dull gray color when exposed to air. Lead has the highest atomic number of any stable element and three of its isotopes are endpoints of major nuclear
decay chain In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most Radionuclide, radioisotopes do not de ...
s of heavier elements. Lead is a relatively unreactive
post-transition metal The metal A metal (from Greek Greek may refer to: Greece Anything of, from, or related to Greece Greece ( el, Ελλάδα, , ), officially the Hellenic Republic, is a country located in Southeast Europe. Its population is approx ...
. Its weak metallic character is illustrated by its
amphoteric In chemistry, an amphoteric compound is a molecule or ion that can react both as an acid An acid is a molecule or ion An ion () is a particle In the Outline of physical science, physical sciences, a particle (or corpuscule in older ...

amphoteric
nature; lead and
lead oxide Lead oxides are a group of inorganic compound In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. However, the distinction is not clearly defi ...
s react with
acid An acid is a or capable of donating a (hydrogen ion H+) (a ), or, alternatively, capable of forming a with an (a ). The first category of acids are the proton donors, or s. In the special case of , proton donors form the H3O+ and are ...
s and bases, and it tends to form
covalent bond A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they s ...
s.
Compounds of lead Compounds of lead exist with lead Lead is a chemical element with the Symbol (chemistry), symbol Pb (from the Latin ) and atomic number 82. It is a heavy metals, heavy metal that is density, denser than most common materials. Lead is Mohs scale ...
are usually found in the +2
oxidation state The oxidation state, or oxidation number, is the hypothetical of an atom if all of its to different atoms were fully . It describes the degree of (loss of s) of an in a . Conceptually, the oxidation state may be positive, negative or zero. Whil ...
rather than the +4 state common with lighter members of the
carbon group The carbon group is a periodic table group In chemistry Chemistry is the scientific discipline involved with Chemical element, elements and chemical compound, compounds composed of atoms, molecules and ions: their composition, structure, pro ...
. Exceptions are mostly limited to
organolead compound Organolead compounds are chemical compound A chemical compound is a chemical substance A chemical substance is a form of matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by havin ...
s. Like the lighter members of the group, lead tends to bond with itself; it can form chains and polyhedral structures. Since lead is easily extracted from its
ore ore – psilomelane Psilomelane is a group name for hard black manganese oxides including hollandite and romanechite. Psilomelane consists of hydrous manganese Manganese is a chemical element Image:Simple Periodic Table Chart- ...

ore
s, prehistoric people in the Near East were aware of it.
Galena Galena, also called lead glance, is the natural mineral form of lead(II) sulfide Lead(II) sulfide (also spelled ''Sulfur#Spelling and etymology, sulphide'') is an inorganic compound with the chemical formula, formula Lead, PbSulfide, S. Galena i ...

Galena
is a principal ore of lead which often bears silver. Interest in silver helped initiate widespread extraction and use of lead in
ancient Rome In historiography Historiography is the study of the methods of historian ( 484– 425 BC) was a Greek historian who lived in the 5th century BC and one of the earliest historians whose work survives. A historian is a person who stud ...
. Lead production declined after the
fall of Rome The fall of the Western Roman Empire (also called the fall of the Roman Empire or the fall of Rome) was the loss of central political control in the Western Roman Empire The Western Roman Empire comprises the western provinces of the Roma ...
and did not reach comparable levels until the
Industrial Revolution The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe Continental Europe or mainland Europe is the contiguous continent A continent is any of several large landmasse ...
. Lead played a crucial role in the development of the
printing press A printing press is a mechanical device for applying pressure to an ink Ink is a gel, sol, or solution Image:SaltInWaterSolutionLiquid.jpg, Making a saline water solution by dissolving Salt, table salt (sodium chloride, NaCl) in water ...
, as
movable type Movable type (US English; moveable type in British English) is the system and technology Technology ("science of craft", from Ancient Greek, Greek , ''techne'', "art, skill, cunning of hand"; and , ''wikt:-logia, -logia'') is the sum of a ...
could be relatively easily cast from lead alloys. In 2014, the annual global production of lead was about ten million tonnes, over half of which was from recycling. Lead's high density, low melting point,
ductility Ductility is a mechanical property commonly described as a material's amenability to drawing Drawing is a form of visual art The visual arts are art forms such as painting Painting is the practice of applying paint, pigment, c ...

ductility
and relative inertness to
oxidation Redox (reduction–oxidation, pronunciation: or ) is a type of chemical reaction A chemical reaction is a process that leads to the chemical transformation of one set of chemical substance A chemical substance is a form of matter ...

oxidation
make it useful. These properties, combined with its relative abundance and low cost, resulted in its extensive use in construction, plumbing,
batteries Battery may refer to: Energy source * Electric battery, an electrochemical device to provide electrical power ** Automotive battery, a device to provide power to certain functions of an automobile ** List of battery types * Energy storage, inclu ...
, bullets and
shot Shot may refer to: Arts, entertainment, and media *Shot (album), ''Shot'' (album), by The Jesus Lizard *''Shot, Illusion, New God'', an EP by Gruntruck *''Shot Rev 2.0'', a video album by The Sisters of Mercy *Shot (song), "Shot" (song), by The Ra ...
, weights,
solder Solder (, or in North America ) is a fusible metal alloy An alloy is an admixture of metal A metal (from Ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polish ...

solder
s,
pewter Pewter () is a malleable Ductility is a mechanical property commonly described as a material's amenability to drawing Drawing is a form of visual art in which an artist uses instruments to mark paper Paper is a thin sheet material ...
s,
fusible alloyA fusible alloy is a metal A metal (from Ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts Electrical resisti ...
s, white paints,
leaded gasoline Gasoline () or petrol () (see the etymology for naming differences) is a transparent, petroleum-derived flammable liquid that is used primarily as a fuel in most spark-ignited internal combustion engines. It consists mostly of organic ...
, and
radiation shield Radiation protection, also known as radiological protection, is defined by the International Atomic Energy Agency The International Atomic Energy Agency (IAEA) is an international organization ''International Organization'' is a quarterly pe ...
ing. In the late 19th century, lead's toxicity was recognized widely, although a number of well-educated ancient Greek and Roman writers were aware of this fact and even knew some of the symptoms of lead poisoning. Lead is a
neurotoxin Neurotoxins are toxins that are destructive to nervous tissue, nerve tissue (causing neurotoxicity). Neurotoxins are an extensive class of exogenous chemical neurological insult (medical), insultsSpencer 2000 that can adversely affect function in ...
that accumulates in soft tissues and bones; it damages the
nervous system In biology, the classical doctrine of the nervous system determines that it is a Complex system, highly complex part of an animal that coordinates its Behavior, actions and Sense, sensory information by transmitting action potential, signals ...

nervous system
and interferes with the function of biological
enzyme Enzymes () are protein Proteins are large s and s that comprise one or more long chains of . Proteins perform a vast array of functions within organisms, including , , , providing and , and from one location to another. Proteins diff ...

enzyme
s, causing neurological disorders, such as brain damage and behavioral problems. Lead also affects general health, cardiovascular, and renal systems.


Physical properties


Atomic

A lead
atom An atom is the smallest unit of ordinary matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of ato ...

atom
has 82
electron The electron is a subatomic particle (denoted by the symbol or ) whose electric charge is negative one elementary charge. Electrons belong to the first generation (particle physics), generation of the lepton particle family, and are general ...

electron
s, arranged in an
electron configuration In atomic physics and quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of chemistry Chemistry is the scientific discipline involved with Chemical element, elements and chemical compound, compoun ...
of [
Xe
Xe
]4f145d106s26p2. The sum of lead's first and second ionization energies—the total energy required to remove the two 6p electrons—is close to that of
tin Tin is a with the Sn (from la, ) and  50. Tin is a silvery-colored metal that characteristically has a faint yellow hue. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent ...

tin
, lead's upper neighbor in the
carbon group The carbon group is a periodic table group In chemistry Chemistry is the scientific discipline involved with Chemical element, elements and chemical compound, compounds composed of atoms, molecules and ions: their composition, structure, pro ...
. This is unusual; ionization energies generally fall going down a group, as an element's outer electrons become more distant from the
nucleus ''Nucleus'' (plural nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA ...
, and more shielded by smaller orbitals. The similarity of ionization energies is caused by the
lanthanide contraction The lanthanide contraction is the greater-than-expected decrease in ionic radii of the elements in the lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical element Image:Simple Periodic ...
—the decrease in element
radii
radii
from
lanthanum Lanthanum is a chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting only of atoms that all have the same numb ...

lanthanum
(atomic number 57) to
lutetium Lutetium is a chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting only of atoms that all have the same numbe ...

lutetium
(71), and the relatively small radii of the elements from
hafnium Hafnium is a chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting only of atoms that all have the same num ...

hafnium
(72) onwards. This is due to poor shielding of the nucleus by the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an elem ...
4f electrons. The sum of the first four ionization energies of lead exceeds that of tin, contrary to what
periodic trends Periodic trends are specific patterns in the properties of chemical elements that are revealed in the periodic table of elements. Major periodic trends include electronegativity, ionization energy, electron affinity, atomic radii, ionic radius, ...

periodic trends
would predict.
Relativistic effects Relativistic quantum chemistry combines relativistic mechanics In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanics, quantum mechanical desc ...
, which become significant in heavier atoms, contribute to this behavior. One such effect is the inert pair effect: the 6s electrons of lead become reluctant to participate in bonding, making the distance between nearest atoms in
crystalline A crystal or crystalline solid is a solid Solid is one of the four fundamental states of matter (the others being liquid, gas and plasma). The molecules in a solid are closely packed together and contain the least amount of kinet ...

crystalline
lead unusually long. Lead's lighter carbon group congeners form stable or metastable
allotrope Allotropy or allotropism () is the property of some chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting o ...
s with the tetrahedrally coordinated and
covalently bonded A covalent bond is a chemical bond A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the Coulomb's law, electrostatic force of attraction bet ...
diamond cubic The diamond cubic crystal structure is a repeating pattern of 8 atoms that certain materials may adopt as they solidify. While the first known example was diamond, other elements in group 14 also adopt this structure, including α-tin, the se ...
structure. The energy levels of their outer
s-
s-
and
p-orbital In atomic theory and quantum mechanics, an atomic orbital is a Function (mathematics), mathematical function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of findi ...

p-orbital
s are close enough to allow mixing into four
hybrid Hybrid may refer to: Economics and finance * Hybrid market, a system allowing stock trades to be completed either electronically or manually * Hybrid security, a type of economic instrument Technology Electrical power generation * Hybrid generato ...
sp3 orbitals. In lead, the inert pair effect increases the separation between its s- and p-orbitals, and the gap cannot be overcome by the energy that would be released by extra bonds following hybridization. Rather than having a diamond cubic structure, lead forms
metallic bonds
metallic bonds
in which only the p-electrons are delocalized and shared between the Pb2+ ions. Lead consequently has a
face-centered cubic 200px, A network model of a primitive cubic system In crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids (see crystal structure). The word "crystallography" is derived fro ...
structure like the similarly sized
divalent In chemistry Chemistry is the scientific discipline involved with Chemical element, elements and chemical compound, compounds composed of atoms, molecules and ions: their composition, structure, properties, behavior and the changes they und ...
metals
calcium Calcium is a chemical element In chemistry, an element is a pure Chemical substance, substance consisting only of atoms that all have the same numbers of protons in their atomic nucleus, nuclei. Unlike chemical compounds, chemical elem ...

calcium
and
strontium Strontium is the chemical element upright=1.0, 500px, The chemical elements ordered by link=Periodic table In chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science ...

strontium
.


Bulk

Pure lead has a bright, silvery appearance with a hint of blue. It tarnishes on contact with moist air and takes on a dull appearance, the hue of which depends on the prevailing conditions. Characteristic properties of lead include high
density The density (more precisely, the volumetric mass density; also known as specific mass), of a substance is its per unit . The symbol most often used for density is ''ρ'' (the lower case Greek letter ), although the Latin letter ''D'' can also ...

density
, malleability, ductility, and high resistance to
corrosion Corrosion is a that converts a refined metal into a more chemically stable form such as , , or . It is the gradual destruction of materials (usually a ) by chemical and/or electrochemical reaction with their environment. is the field dedica ...

corrosion
due to passivation. Lead's close-packed face-centered cubic structure and high atomic weight result in a density of 11.34 g/cm3, which is greater than that of common metals such as iron (7.87 g/cm3), copper (8.93 g/cm3), and
zinc Zinc is a chemical element In chemistry, an element is a pure Chemical substance, substance consisting only of atoms that all have the same numbers of protons in their atomic nucleus, nuclei. Unlike chemical compounds, chemical element ...

zinc
(7.14 g/cm3). This density is the origin of the idiom ''to go over like a lead balloon''. Some rarer metals are denser:
tungsten Tungsten, or wolfram, is a chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting only of atoms that all have ...

tungsten
and gold are both at 19.3 g/cm3, and
osmium Osmium (from Greek#REDIRECT Greek Greek may refer to: Greece Anything of, from, or related to Greece Greece ( el, Ελλάδα, , ), officially the Hellenic Republic, is a country located in Southeast Europe. Its population is approximat ...

osmium
—the densest metal known—has a density of 22.59 g/cm3, almost twice that of lead. Lead is a very soft metal with a
Mohs hardness The Mohs scale of mineral hardness () is a Qualitative property, qualitative ordinal scale, from 1 to 10, characterizing scratch resistance of various minerals through the ability of harder material to scratch softer material. The scale was creat ...
of 1.5; it can be scratched with a fingernail. It is quite malleable and somewhat ductile. The
bulk modulus The bulk modulus (K or B) of a substance is a measure of how resistant to compression that substance is. It is defined as the ratio of the infinitesimal In mathematics, infinitesimals or infinitesimal numbers are quantities that are closer to ze ...
of lead—a measure of its ease of compressibility—is 45.8 
GPa The pascal (symbol: Pa) is the SI derived unit SI derived units are units of measurement ' Measurement is the number, numerical quantification (science), quantification of the variable and attribute (research), attributes of an object or event, ...
. In comparison, that of aluminium is 75.2 GPa; copper 137.8 GPa; and
mild steel Carbon steel is a steel Steel is an alloy An alloy is an admixture of metal A metal (from Ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fract ...
160–169 GPa. Lead's
tensile strength In physics Physics (from grc, φυσική (ἐπιστήμη), physikḗ (epistḗmē), knowledge of nature, from ''phýsis'' 'nature'), , is the natural science that studies matter, its Motion (physics), motion and behavior through Spa ...
, at 12–17 MPa, is low (that of aluminium is 6 times higher, copper 10 times, and mild steel 15 times higher); it can be strengthened by adding small amounts of copper or
antimony Antimony is a chemical element upright=1.0, 500px, The chemical elements ordered by link=Periodic table In chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science t ...

antimony
. The melting point of lead—at 327.5 °C (621.5 °F)—is very low compared to most metals. Its
boiling point The boiling point of a substance is the temperature at which the vapor pressure 280px, The ''pistol test tube'' experiment. The tube contains alcohol and is closed with a piece of cork. By heating the alcohol, the vapors fill in the space, inc ...
of 1749 °C (3180 °F) is the lowest among the carbon group elements. The
electrical resistivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that quantifies how strongly it resists electric current An electric current is a stream of charged particles, ...
of lead at 20 °C is 192
nanoohm
nanoohm
-meters, almost an
order of magnitude An order of magnitude is an approximation of the logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a given number  is the exponent to which another fixed number, the ''base (ex ...
higher than those of other industrial metals (copper at ; gold ; and aluminium at ). Lead is a
superconductor
superconductor
at temperatures lower than 7.19 
K
K
; this is the highest
critical temperature Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine * Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in ...
of all
type-I superconductor The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided into tw ...
s and the third highest of the elemental superconductors.


Isotopes

Natural lead consists of four stable
isotope Isotopes are two or more types of atoms that have the same atomic number 300px, The Rutherford–Bohr model of the hydrogen atom () or a hydrogen-like ion (). In this model it is an essential feature that the photon energy (or frequency) of ...
s with mass numbers of 204, 206, 207, and 208, and traces of five short-lived radioisotopes. The high number of isotopes is consistent with lead's
atomic number 300px, The Rutherford–Bohr model of the hydrogen atom () or a hydrogen-like ion (). In this model it is an essential feature that the photon energy (or frequency) of the electromagnetic radiation emitted (shown) when an electron jumps from one ...
being even. Lead has a magic number of protons (82), for which the
nuclear shell model#REDIRECT Nuclear shell model In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model is a nuclear model, model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in ...
accurately predicts an especially stable nucleus. Lead-208 has 126 neutrons, another magic number, which may explain why lead-208 is extraordinarily stable. With its high atomic number, lead is the heaviest element whose natural isotopes are regarded as stable; lead-208 is the heaviest stable nucleus. (This distinction formerly fell to
bismuth Bismuth is a chemical element Image:Simple Periodic Table Chart-blocks.svg, 400px, Periodic table, The periodic table of the chemical elements In chemistry, an element is a pure substance consisting only of atoms that all have the same numbe ...

bismuth
, with an atomic number of 83, until its only
primordial isotope In geochemistry Geochemistry is the science Science (from the Latin word ''scientia'', meaning "knowledge") is a systematic enterprise that Scientific method, builds and Taxonomy (general), organizes knowledge in the form of Testability, ...
, bismuth-209, was found in 2003 to decay very slowly.) The four stable isotopes of lead could theoretically undergo
alpha decay
alpha decay
to isotopes of
mercury Mercury usually refers to: * Mercury (planet) Mercury is the smallest planet in the Solar System and the closest to the Sun. Its orbit around the Sun takes 87.97 Earth days, the shortest of all the Sun's planets. It is named after the Roman g ...

mercury
with a release of energy, but this has not been observed for any of them; their predicted half-lives range from 1035 to 10189 years (at least 1025 times the current age of the universe). Three of the stable isotopes are found in three of the four major
decay chains In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most Radionuclide, radioisotopes do not dec ...
: lead-206, lead-207, and lead-208 are the final decay products of uranium-238, uranium-235, and thorium-232, respectively. These decay chains are called the uranium chain, the actinium chain, and the thorium chain. Their isotopic concentrations in a natural rock sample depends greatly on the presence of these three parent uranium and thorium isotopes. For example, the relative abundance of lead-208 can range from 52% in normal samples to 90% in thorium ores; for this reason, the standard atomic weight of lead is given to only one decimal place. As time passes, the ratio of lead-206 and lead-207 to lead-204 increases, since the former two are supplemented by radioactive decay of heavier elements while the latter is not; this allows for
lead–lead datingLead–lead dating is a Chronological dating, method for dating geological samples, normally based on 'whole-rock' samples of material such as granite. For most dating requirements it has been superseded by uranium–lead dating (U–Pb dating), but ...
. As uranium decays into lead, their relative amounts change; this is the basis for
uranium–lead dating Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routin ...
. Lead-207 exhibits
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon A phenomenon (; plural phenomena) is an observable In physics Physics (from grc, φυσική (ἐπιστήμη), physikḗ (epistḗmē), knowledge of nature, from ...
, a property that has been used to study its compounds in solution and solid state, including in human body. Apart from the stable isotopes, which make up almost all lead that exists naturally, there are trace quantities of a few radioactive isotopes. One of them is lead-210; although it has a half-life of only 22.3 years, small quantities occur in nature because lead-210 is produced by a long decay series that starts with uranium-238 (that has been present for billions of years on Earth). Lead-211, −212, and −214 are present in the decay chains of uranium-235, thorium-232, and uranium-238, respectively, so traces of all three of these lead isotopes are found naturally. Minute traces of lead-209 arise from the very rare
cluster decay Cluster decay, also named heavy particle radioactivity or heavy ion radioactivity, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutron The neutron is a subatomic particle, symbol or , which has a ne ...
of radium-223, one of the
daughter product The decay chain from lead-212 down to lead-208, showing the intermediate decay products. In nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions. Other forms of nuclear mat ...
s of natural uranium-235, and the decay chain of neptunium-237, traces of which are produced by
neutron capture Neutron capture is a nuclear reaction In nuclear physics Nuclear physics is the field of physics Physics is the natural science that studies matter, its Elementary particle, fundamental constituents, its Motion (physics), motion a ...
in uranium ores. Lead-210 is particularly useful for helping to identify the ages of samples by measuring its ratio to lead-206 (both isotopes are present in a single decay chain). In total, 43 lead isotopes have been synthesized, with mass numbers 178–220. Lead-205 is the most stable radioisotope, with a half-life of around 1.73 years. The second-most stable is lead-202, which has a half-life of about 52,500 years, longer than any of the natural trace radioisotopes.


Chemistry

Bulk lead exposed to moist air forms a protective layer of varying composition.
Lead(II) carbonate Lead(II) carbonate is the chemical compound PbCO3. It is a white solid with several practical uses, despite its toxicity. It occurs naturally as the mineral cerussite Cerussite (also known as lead carbonate or white lead ore) is a mineral In g ...
is a common constituent; the
sulfate The sulfate or sulphate ion is a polyatomic anion An ion () is an atom An atom is the smallest unit of ordinary matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having ...

sulfate
or
chloride The chloride ion An ion () is a particle In the Outline of physical science, physical sciences, a particle (or corpuscule in older texts) is a small wikt:local, localized physical body, object to which can be ascribed several physical ...

chloride
may also be present in urban or maritime settings. This layer makes bulk lead effectively chemically inert in the air. Finely powdered lead, as with many metals, is
pyrophoric A substance is pyrophoric (from grc-gre, πυροφόρος, , 'fire-bearing') if it ignites spontaneously in air at or below (for gases) or within 5 minutes after coming into contact with air (for liquids and solids). Examples are iron sulfid ...
, and burns with a bluish-white flame.
Fluorine Fluorine is a chemical element with the Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard conditions for temperature and pressure, standard conditions as a highly toxic, pale yellow Diatomic molecule ...

Fluorine
reacts with lead at room temperature, forming
lead(II) fluoride Lead(II) fluoride is the inorganic compound with the formula Lead, PbFluoride, F2. It is a white solid. It exists as both an orthorhombic and cubic Polymorphism (materials science), forms. Uses Lead(II) fluoride is used in low melting glasses, ...
. The reaction with chlorine is similar but requires heating, as the resulting chloride layer diminishes the reactivity of the elements. Molten lead reacts with the chalcogens to give lead(II) chalcogenides. Lead metal resists sulfuric acid, sulfuric and phosphoric acid but not hydrochloric acid, hydrochloric or nitric acid; the outcome depends on insolubility and subsequent passivation of the product salt. Organic acids, such as acetic acid, dissolve lead in the presence of oxygen. Concentrated alkalis will dissolve lead and form plumbites.


Inorganic compounds

Lead shows two main oxidation states: +4 and +2. The tetravalent state is common for the carbon group. The divalent state is rare for carbon and silicon, minor for germanium, important (but not prevailing) for tin, and is the more important of the two oxidation states for lead. This is attributable to relativistic quantum chemistry, relativistic effects, specifically the inert pair effect, which manifests itself when there is a large difference in electronegativity between lead and oxide, halide, or nitride anions, leading to a significant partial positive charge on lead. The result is a stronger contraction of the lead 6s orbital than is the case for the 6p orbital, making it rather inert in ionic compounds. The inert pair effect is less applicable to compounds in which lead forms covalent bonds with elements of similar electronegativity, such as carbon in organolead compounds. In these, the 6s and 6p orbitals remain similarly sized and sp3 hybridization is still energetically favorable. Lead, like carbon, is predominantly tetravalent in such compounds. There is a relatively large difference in the electronegativity of lead(II) at 1.87 and lead(IV) at 2.33. This difference marks the reversal in the trend of increasing stability of the +4 oxidation state going down the carbon group; tin, by comparison, has values of 1.80 in the +2 oxidation state and 1.96 in the +4 state.


Lead(II)

Lead(II) compounds are characteristic of the inorganic chemistry of lead. Even strong oxidizing agents like fluorine and chlorine react with lead to give only PbF2 and PbCl2. Lead(II) ions are usually colorless in solution, and partially hydrolyze to form Pb(OH)+ and finally [Pb4(OH)4]4+ (in which the hydroxyl ions act as bridging ligands), but are not reducing agents as tin(II) ions are. Qualitative inorganic analysis, Techniques for identifying the presence of the Pb2+ ion in water generally rely on the precipitation of lead(II) chloride using dilute hydrochloric acid. As the chloride salt is sparingly soluble in water, in very dilute solutions the precipitation of lead(II) sulfide is achieved by bubbling hydrogen sulfide through the solution. Lead monoxide exists in two Polymorphism (materials science), polymorphs, litharge α-PbO (red) and massicot β-PbO (yellow), the latter being stable only above around 488 °C. Litharge is the most commonly used inorganic compound of lead. There is no lead(II) hydroxide; increasing the pH of solutions of lead(II) salts leads to hydrolysis and condensation. Lead commonly reacts with heavier chalcogens. Lead sulfide is a semiconductor, a photoconductor, and an extremely sensitive Particle detector, infrared radiation detector. The other two chalcogenides, lead selenide and lead telluride, are likewise photoconducting. They are unusual in that their color becomes lighter going down the group. Lead dihalides are well-characterized; this includes the diastatide and mixed halides, such as PbFCl. The relative insolubility of the latter forms a useful basis for the Gravimetric analysis, gravimetric determination of fluorine. The difluoride was the first solid Ionic conductivity (solid state), ionically conducting compound to be discovered (in 1834, by Michael Faraday). The other dihalides decompose on exposure to ultraviolet or visible light, especially the diiodide. Many lead(II) Pseudohalogen, pseudohalides are known, such as the Lead(II) cyanide, cyanide, Lead(II) cyanate, cyanate, and Lead(II) thiocyanate, thiocyanate. Lead(II) forms an extensive variety of halide coordination complexes, such as [PbCl4]2−, [PbCl6]4−, and the [Pb2Cl9]''n''5''n''− chain anion. Lead(II) sulfate is insoluble in water, like the sulfates of other heavy divalent cations. Lead(II) nitrate and lead(II) acetate are very soluble, and this is exploited in the synthesis of other lead compounds.


Lead(IV)

Few inorganic lead(IV) compounds are known. They are only formed in highly oxidizing solutions and do not normally exist under standard conditions. Lead(II) oxide gives a mixed oxide on further oxidation, Pb3O4. It is described as lead(II,IV) oxide, or structurally 2PbO·PbO2, and is the best-known mixed valence lead compound. Lead dioxide is a strong oxidizing agent, capable of oxidizing hydrochloric acid to chlorine gas. This is because the expected PbCl4 that would be produced is unstable and spontaneously decomposes to PbCl2 and Cl2. Analogously to lead monoxide, lead dioxide is capable of forming plumbate anions. Lead disulfide and lead diselenide are only stable at high pressures. Lead tetrafluoride, a yellow crystalline powder, is stable, but less so than the lead difluoride, difluoride. Lead tetrachloride (a yellow oil) decomposes at room temperature, lead tetrabromide is less stable still, and the existence of lead tetraiodide is questionable.


Other oxidation states

Some lead compounds exist in formal oxidation states other than +4 or +2. Lead(III) may be obtained, as an intermediate between lead(II) and lead(IV), in larger organolead complexes; this oxidation state is not stable, as both the lead(III) ion and the larger complexes containing it are radical (chemistry), radicals. The same applies for lead(I), which can be found in such radical species. Numerous mixed lead(II,IV) oxides are known. When PbO2 is heated in air, it becomes Pb12O19 at 293 °C, Pb12O17 at 351 °C, Pb3O4 at 374 °C, and finally PbO at 605 °C. A further sesquioxide, Pb2O3, can be obtained at high pressure, along with several non-stoichiometric phases. Many of them show defective fluorite structures in which some oxygen atoms are replaced by vacancies: PbO can be considered as having such a structure, with every alternate layer of oxygen atoms absent. Negative oxidation states can occur as Zintl phases, as either free lead anions, as in Ba2Pb, with lead formally being lead(−IV), or in oxygen-sensitive ring-shaped or polyhedral cluster ions such as the trigonal bipyramidal molecular geometry, trigonal bipyramidal Pb52− ion, where two lead atoms are lead(−I) and three are lead(0). In such anions, each atom is at a polyhedral vertex and contributes two electrons to each covalent bond along an edge from their sp3 hybrid orbitals, the other two being an external lone pair. They may be made in liquid ammonia via the reduction of lead by sodium.


Organolead

Lead can form catenation, multiply-bonded chains, a property it shares with its lighter homology (chemistry), homologs in the carbon group. Its capacity to do so is much less because the Pb–Pb bond energy is over three and a half times lower than that of the C–C bond. With itself, lead can build metal–metal bonds of an order up to three. With carbon, lead forms organolead compounds similar to, but generally less stable than, typical organic compounds (due to the Pb–C bond being rather weak). This makes the organometallic chemistry of lead far less wide-ranging than that of tin. Lead predominantly forms organolead(IV) compounds, even when starting with inorganic lead(II) reactants; very few organolead(II) compounds are known. The most well-characterized exceptions are Pb[CH(SiMe3)2]2 and Pb(''η''5-C5H5)2. The lead analog of the simplest organic compound, methane, is plumbane. Plumbane may be obtained in a reaction between metallic lead and atomic hydrogen. Two simple derivatives, tetramethyllead and tetraethyllead, are the best-known organolead compounds. These compounds are relatively stable: tetraethyllead only starts to decompose if heated or if exposed to sunlight or ultraviolet light. With sodium metal, lead readily forms an equimolar alloy that reacts with alkyl halides to form organometallic compounds such as tetraethyllead. The oxidizing nature of many organolead compounds is usefully exploited: lead tetraacetate is an important laboratory reagent for oxidation in organic synthesis. Tetraethyllead, once added to gasoline, was produced in larger quantities than any other organometallic compound. Other organolead compounds are less chemically stable. For many organic compounds, a lead analog does not exist.


Origin and occurrence


In space

Lead's per-particle abundance in the Solar System is 0.121 parts per billion, ppb (parts per billion). This figure is two and a half times higher than that of platinum, eight times more than mercury, and seventeen times more than gold. The amount of lead in the universe is slowly increasing as most heavier atoms (all of which are unstable) gradually decay to lead. The abundance of lead in the Solar System since its formation 4.5 billion years ago has increased by about 0.75%. The solar system abundances table shows that lead, despite its relatively high atomic number, is more prevalent than most other elements with atomic numbers greater than 40. Primordial lead—which comprises the isotopes lead-204, lead-206, lead-207, and lead-208—was mostly created as a result of repetitive neutron capture processes occurring in stars. The two main modes of capture are the s-process, s- and r-processes. In the s-process (s is for "slow"), captures are separated by years or decades, allowing less stable nuclei to undergo beta decay. A stable thallium-203 nucleus can capture a neutron and become thallium-204; this undergoes beta decay to give stable lead-204; on capturing another neutron, it becomes lead-205, which has a half-life of around 15 million years. Further captures result in lead-206, lead-207, and lead-208. On capturing another neutron, lead-208 becomes lead-209, which quickly decays into bismuth-209. On capturing another neutron, bismuth-209 becomes bismuth-210, and this beta decays to polonium-210, which alpha decays to lead-206. The cycle hence ends at lead-206, lead-207, lead-208, and bismuth-209. In the r-process (r is for "rapid"), captures happen faster than nuclei can decay. This occurs in environments with a high neutron density, such as a supernova or the merger of two neutron stars. The neutron flux involved may be on the order of 1022 neutrons per square centimeter per second. The r-process does not form as much lead as the s-process. It tends to stop once neutron-rich nuclei reach 126 neutrons. At this point, the neutrons are arranged in complete shells in the atomic nucleus, and it becomes harder to energetically accommodate more of them. When the neutron flux subsides, these nuclei beta decay into stable isotopes of osmium, iridium, and platinum.


On Earth

Lead is classified as a Goldschmidt classification#Chalcophile elements, chalcophile under the Goldschmidt classification, meaning it is generally found combined with sulfur. It rarely occurs in its native metal, native, metallic form. Many lead minerals are relatively light and, over the course of the Earth's history, have remained in the Earth's crust, crust instead of sinking deeper into the Earth's interior. This accounts for lead's relatively high crustal abundance of 14 ppm; it is the 38th most Abundances of the elements (data page), abundant element in the crust. The main lead-bearing mineral is galena (PbS), which is mostly found with zinc ores. Most other lead minerals are related to galena in some way; boulangerite, Pb5Sb4S11, is a mixed sulfide derived from galena; anglesite, PbSO4, is a product of galena oxidation; and cerussite or white lead ore, PbCO3, is a decomposition product of galena. Arsenic, tin, antimony, silver, gold, copper, and bismuth are common impurities in lead minerals. World lead resources exceed two billion tons. Significant deposits are located in Australia, China, Ireland, Mexico, Peru, Portugal, Russia, and the United States. Global reserves—resources that are economically feasible to extract—totaled 88 million tons in 2016, of which Australia had 35 million, China 17 million, and Russia 6.4 million. Typical background concentrations of lead do not exceed 0.1 μg/m3 in the atmosphere; 100 mg/kg in soil; 4 mg/kg in vegetation and 5 μg/L in freshwater and seawater.


Etymology

The modern English word ''lead'' is of Germanic origin; it comes from the Middle English and Old English (with the Macron (diacritic), macron above the "e" signifying that the vowel sound of that letter is long). The Old English word is derived from the hypothetical reconstructed Proto-Germanic language, Proto-Germanic ('lead'). According to linguistic theory, this word bore descendants in multiple Germanic languages of exactly the same meaning. There is no consensus on the origin of the Proto-Germanic . One hypothesis suggests it is derived from Proto-Indo-European language, Proto-Indo-European ('lead'; capitalization of the vowel is equivalent to the macron). Another hypothesis suggests it is borrowed from Proto-Celtic language, Proto-Celtic ('lead'). This word is related to the Latin language, Latin , which gave the element its chemical symbol ''Pb''. The word is thought to be the origin of Proto-Germanic (which also means 'lead'), from which stemmed the German . The name of the chemical element is not related to the verb of the same spelling, which is derived from Proto-Germanic ('to lead').


History


Prehistory and early history

Metallic lead beads metals of antiquity, dating back to 7000–6500 BCE have been found in Asia Minor and may represent the first example of metal smelting. At that time lead had few (if any) applications due to its softness and dull appearance. The major reason for the spread of lead production was its association with silver, which may be obtained by burning galena (a common lead mineral). The Ancient Egyptians were the first to use lead minerals in cosmetics, an application that spread to Ancient Greece and beyond; the Egyptians may have used lead for sinkers in fishing nets, glaze (metallurgy), glazes, glasses, Vitreous enamel, enamels, and for ornaments. Various civilizations of the Fertile Crescent used lead as a writing material, as coin, coins, and as a construction material. Lead was used in the Ancient China, Ancient Chinese royal court as a stimulant, as currency, and as a Birth control, contraceptive; the Indus Valley civilization and the Mesoamericans used it for making amulets; and the eastern and southern African peoples used lead in wire drawing.


Classical era

Because silver was extensively used as a decorative material and an exchange medium, lead deposits came to be worked in Asia Minor from 3000 BCE; later, lead deposits were developed in the Aegean Islands, Aegean and Laurion. These three regions collectively dominated production of mined lead until c. 1200 BCE. Beginning circa 2000 BCE, the Phoenicians worked deposits in the Iberian peninsula; by 1600 BCE, lead mining existed in Cyprus, Greece, and Sardinia. Roman Republic, Rome's territorial expansion in Europe and across the Mediterranean, and its development of mining, led to it becoming the greatest producer of lead during the Classical antiquity, classical era, with an estimated annual output peaking at 80,000 tonnes. Like their predecessors, the Romans obtained lead mostly as a by-product of silver smelting. Roman metallurgy, Lead mining occurred in Central Europe, Roman Britain, Britain, the Balkans, Greece, Anatolia, and Hispania, the latter accounting for 40% of world production. Lead tablets were commonly used as a material for letters. Lead coffins, cast in flat sand forms, with interchangeable motifs to suit the faith of the deceased were used in ancient Judea (Roman province), Judea. Lead was used to make sling bullets from the 5th century BC. In Roman times, lead sling bullets were amply used, and were effective at a distance of between 100 and 150 meters. The Balearic slingers, used as mercenaries in Carthaginian and Roman armies, were famous for their shooting distance and accuracy. Lead was used for making water pipes in the Roman Empire; the
Latin Latin (, or , ) is a classical language A classical language is a language A language is a structured system of communication Communication (from Latin ''communicare'', meaning "to share" or "to be in relation with") is "an appa ...

Latin
word for the metal, , is the origin of the English word "plumbing". Its ease of working and resistance to corrosion ensured its widespread use in other applications, including pharmaceuticals, roofing, currency, and warfare. Writers of the time, such as Cato the Elder, Columella, and Pliny the Elder, recommended lead (or lead-coated) vessels for the preparation of Defrutum, sweeteners and preservatives added to wine and food. The lead conferred an agreeable taste due to the formation of "sugar of lead" (lead(II) acetate), whereas copper or bronze vessels could impart a bitter flavor through verdigris formation. The Roman author Vitruvius reported the health dangers of lead and modern writers have suggested that lead poisoning played a major role in the decline of the Roman Empire. Other researchers have criticized such claims, pointing out, for instance, that not all abdominal pain is caused by lead poisoning. According to archaeological research, Roman lead pipes increased lead levels in tap water but such an effect was "unlikely to have been truly harmful". When lead poisoning did occur, victims were called "saturnine", dark and cynical, after the ghoulish father of the gods, Saturn (mythology), Saturn. By association, lead was considered the father of all metals. Its status in Roman society was low as it was readily available and cheap.


Confusion with tin and antimony

During the classical era (and even up to the 17th century), tin was often not distinguished from lead: Romans called lead ("black lead"), and tin ("bright lead"). The association of lead and tin can be seen in other languages: the word in Czech language, Czech translates to "lead", but in Russian, its cognate () means "tin". To add to the confusion, lead bore a close relation to antimony: both elements commonly occur as sulfides (galena and stibnite), often together. Pliny incorrectly wrote that stibnite would give lead on heating, instead of antimony. In countries such as Turkey and India, the originally Persian name came to refer to either antimony sulfide or lead sulfide, and in some languages, such as Russian, gave its name to antimony ().


Middle Ages and the Renaissance

Lead mining in Western Europe declined after the fall of the Western Roman Empire, with Al-Andalus, Arabian Iberia being the only region having a significant output. The largest production of lead occurred in South and East Asia, especially China and India, where lead mining grew rapidly. In Europe, lead production began to increase in the 11th and 12th centuries, when it was again used for roofing and piping. Starting in the 13th century, lead was used to create medieval stained glass, stained glass. In the Alchemy#Medieval Europe, European and Alchemy and chemistry in medieval Islam, Arabian traditions of alchemy, lead (symbol in the European tradition) was considered an impure base metal which, by the separation, purification and balancing of its constituent essences, could be transformed to pure and incorruptible gold. During the period, lead was used increasingly for adulteration, adulterating wine. The use of such wine was forbidden for use in Christian rites by a papal bull in 1498, but it continued to be imbibed and resulted in mass poisonings up to the late 18th century. Lead was a key material in parts of the
printing press A printing press is a mechanical device for applying pressure to an ink Ink is a gel, sol, or solution Image:SaltInWaterSolutionLiquid.jpg, Making a saline water solution by dissolving Salt, table salt (sodium chloride, NaCl) in water ...
, and lead dust was commonly inhaled by print workers, causing lead poisoning. Lead also became the chief material for making bullets for firearms: it was cheap, less damaging to iron gun barrels, had a higher density (which allowed for better retention of velocity), and its lower melting point made the production of bullets easier as they could be made using a wood fire. Lead, in the form of Venetian ceruse, was extensively used in cosmetics by Western European aristocracy as whitened faces were regarded as a sign of modesty. This practice later expanded to white wigs and eyeliners, and only faded out with the French Revolution in the late 18th century. A similar fashion appeared in Japan in the 18th century with the emergence of the geishas, a practice that continued long into the 20th century. The white faces of women "came to represent their feminine virtue as Japanese women", with lead commonly used in the whitener.


Outside Europe and Asia

In the New World, lead production was recorded soon after the arrival of European settlers. The earliest record dates to 1621 in the English Colony of Virginia, fourteen years after its foundation. In Australia, the first mine opened by colonists on the continent was a lead mine, in 1841. In Africa, lead mining and smelting were known in the Benue Trough and the lower Congo Basin, where lead was used for trade with Europeans, and as a currency by the 17th century, well before the scramble for Africa.


Industrial Revolution

In the second half of the 18th century, Britain, and later continental Europe and the United States, experienced the
Industrial Revolution The Industrial Revolution was the transition to new manufacturing processes in Great Britain, continental Europe Continental Europe or mainland Europe is the contiguous continent A continent is any of several large landmasse ...
. This was the first time during which lead production rates exceeded those of Rome. Britain was the leading producer, losing this status by the mid-19th century with the depletion of its mines and the development of lead mining in Germany, Spain, and the United States. By 1900, the United States was the leader in global lead production, and other non-European nations—Canada, Mexico, and Australia—had begun significant production; production outside Europe exceeded that within. A great share of the demand for lead came from plumbing and painting—lead paints were in regular use. At this time, more (working class) people were exposed to the metal and lead poisoning cases escalated. This led to research into the effects of lead intake. Lead was proven to be more dangerous in its fume form than as a solid metal. Lead poisoning and gout were linked; British physician Alfred Baring Garrod noted a third of his gout patients were plumbers and painters. The effects of chronic ingestion of lead, including mental disorders, were also studied in the 19th century. The first laws aimed at decreasing lead poisoning in factories were enacted during the 1870s and 1880s in the United Kingdom.


Modern era

Further evidence of the threat that lead posed to humans was discovered in the late 19th and early 20th centuries. Mechanisms of harm were better understood, lead blindness was documented, and the element was phased out of public use in the United States and Europe. The United Kingdom introduced mandatory factory inspections in 1878 and appointed the first Medical Inspector of Factories in 1898; as a result, a 25-fold decrease in lead poisoning incidents from 1900 to 1944 was reported. Most European countries banned lead paint—commonly used because of its opacity and water resistance—for interiors by 1930. The last major human exposure to lead was the addition of tetraethyllead to gasoline as an antiknock agent, a practice that originated in the United States in 1921. It was phased out in the United States and the European Union by 2000. In the 1970s, the United States and Western European countries introduced legislation to reduce lead air pollution. The impact was significant: while a study conducted by the Centers for Disease Control and Prevention in the United States in 1976–1980 showed that 77.8% of the population had elevated blood lead levels, in 1991–1994, a study by the same institute showed the share of people with such high levels dropped to 2.2%. The main product made of lead by the end of the 20th century was the lead–acid battery. From 1960 to 1990, lead output in the Western Bloc grew by about 31%. The share of the world's lead production by the Eastern Bloc increased from 10% to 30%, from 1950 to 1990, with the Soviet Union being the world's largest producer during the mid-1970s and the 1980s, and China starting major lead production in the late 20th century. Unlike the European communist countries, China was largely unindustrialized by the mid-20th century; in 2004, China surpassed Australia as the largest producer of lead. As was the case during European industrialization, lead has had a negative effect on health in China.


Production

As of 2014, production of lead is increasing worldwide due to its use in lead–acid batteries. There are two major categories of production: primary from mined ores, and secondary from scrap. In 2014, 4.58 million metric tons came from primary production and 5.64 million from secondary production. The top three producers of mined lead concentrate in that year were China, Australia, and the United States. The top three producers of refined lead were China, the United States, and India. According to the International Resource Panel's Metal Stocks in Society report of 2010, the total amount of lead in use, stockpiled, discarded, or dissipated into the environment, on a global basis, is 8 kg per capita. Much of this is in more developed countries (20–150 kg per capita) rather than less developed ones (1–4 kg per capita). The primary and secondary lead production processes are similar. Some primary production plants now supplement their operations with scrap lead, and this trend is likely to increase in the future. Given adequate techniques, lead obtained via secondary processes is indistinguishable from lead obtained via primary processes. Scrap lead from the building trade is usually fairly clean and is re-melted without the need for smelting, though refining is sometimes needed. Secondary lead production is therefore cheaper, in terms of energy requirements, than is primary production, often by 50% or more.


Primary

Most lead ores contain a low percentage of lead (rich ores have a typical content of 3–8%) which must be concentrated for extraction. During initial processing, ores typically undergo crushing, dense-medium separation, grinding (abrasive cutting), grinding, froth flotation, and drying. The resulting concentrate, which has a lead content of 30–80% by mass (regularly 50–60%), is then turned into (impure) lead metal. There are two main ways of doing this: a two-stage process involving roasting followed by blast furnace extraction, carried out in separate vessels; or a direct process in which the extraction of the concentrate occurs in a single vessel. The latter has become the most common route, though the former is still significant.
Contrary to popular belief, pencil leads in wooden pencils have never been made from lead. When the pencil originated as a wrapped graphite writing tool, the particular type of graphite used was named Plumbago (mineral)#Plumbago, ''plumbago'' (literally, ''act for lead'' or ''lead mockup'').


Elemental form

Lead metal has several useful mechanical properties, including high density, low melting point, ductility, and relative inertness. Many metals are superior to lead in some of these aspects but are generally less common and more difficult to extract from parent ores. Lead's toxicity has led to its phasing out for some uses. Lead has been used for bullets since their invention in the Middle Ages. It is inexpensive; its low melting point means small arms ammunition and shotgun pellets can be cast with minimal technical equipment; and it is denser than other common metals, which allows for better retention of velocity. It remains the main material for bullets, alloyed with other metals as hardeners. Concerns have been raised that lead bullets used for hunting can damage the environment. Lead's high density and resistance to corrosion have been exploited in a number of related applications. It is used as ballast in sailboat keels; its density allows it to take up a small volume and minimize water resistance, thus counterbalancing the heeling effect of wind on the sails. It is used in scuba diving diving weighting system, weight belts to counteract the diver's buoyancy. In 1993, the base of the Leaning Tower of Pisa was stabilized with 600 tonnes of lead. Because of its corrosion resistance, lead is used as a protective sheath for underwater cables. Lead has many uses in the construction industry; lead sheets are used as architectural metals in roofing material, Cladding (construction), cladding, Flashing (weatherproofing), flashing, rain gutter, gutters and gutter joints, and on roof parapets. Lead is still used in statues and sculptures, including for armature (sculpture), armatures. In the past it was often used to tire balance, balance the wheels of cars; for environmental reasons this use is being phased out in favor of other materials. Lead is added to copper alloys, such as brass and bronze, to improve machinability and for its lubricant, lubricating qualities. Being practically insoluble in copper the lead forms solid globules in imperfections throughout the alloy, such as grain boundaries. In low concentrations, as well as acting as a lubricant, the globules hinder the formation of swarf as the alloy is worked, thereby improving machinability. Copper alloys with larger concentrations of lead are used in Bearing (mechanical), bearings. The lead provides lubrication, and the copper provides the load-bearing support. Lead's high density, atomic number, and formability form the basis for use of lead as a barrier that absorbs sound, vibration, and radiation. Lead has no natural resonance frequencies; as a result, sheet-lead is used as a sound deadening layer in the walls, floors, and ceilings of sound studios. Organ pipes are often made from a lead alloy, mixed with various amounts of tin to control the tone of each pipe. Lead is an established lead shielding, shielding material from ionizing radiation, radiation in nuclear science and in X-ray rooms due to its denseness and high attenuation coefficient. Molten lead has been used as a coolant for lead-cooled fast reactors. The largest use of lead in the early 21st century is in lead–acid batteries. The lead in batteries undergoes no direct contact with humans, so there are fewer toxicity concerns. People who work in lead battery production plants may be exposed to lead dust and inhale it.} The reactions in the battery between lead, lead dioxide, and sulfuric acid provide a reliable source of voltage. Supercapacitors incorporating lead–acid batteries have been installed in kilowatt and megawatt scale applications in Australia, Japan, and the United States in frequency regulation, solar smoothing and shifting, wind smoothing, and other applications. These batteries have lower energy density and charge-discharge efficiency than lithium-ion battery, lithium-ion batteries, but are significantly cheaper. Lead is used in high voltage power cables as sheathing material to prevent water diffusion into insulation; this use is decreasing as lead is being phased out. Its use in
solder Solder (, or in North America ) is a fusible metal alloy An alloy is an admixture of metal A metal (from Ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polish ...

solder
for electronics is also being phased out by some countries to reduce the amount of environmental hazard, environmentally hazardous waste. Lead is one of three metals used in the Oddy test for museum materials, helping detect organic acids, aldehydes, and acidic gases.


Compounds

In addition to being the main application for lead metal, lead-acid batteries are also the main consumer of lead compounds. The energy storage/release reaction used in these devices involves lead sulfate and lead dioxide: :(s) + (s) + 2(aq) → 2(s) + 2(l) Other applications of lead compounds are very specialized and often fading. Lead-based coloring agents are used in ceramic glazes and glass, especially for red and yellow shades. While lead paints are phased out in Europe and North America, they remain in use in less developed countries such as China, India, or Indonesia. Lead tetraacetate and lead dioxide are used as oxidizing agents in organic chemistry. Lead is frequently used in the polyvinyl chloride coating of electrical cords. It can be used to treat candle wicks to ensure a longer, more even burn. Because of its toxicity, European and North American manufacturers use alternatives such as zinc. Lead glass is composed of 12–28% Lead(II) oxide, lead oxide, changing its optical characteristics and reducing the transmission of ionizing radiation, a property used in old TVs and computer monitors with cathode-ray tubes. Lead-based semiconductors such as lead telluride and lead selenide are used in photovoltaic cells and infrared detectors.


Biological effects

Lead has no confirmed biological role, and there is no confirmed safe level of lead exposure. A 2009 Canadian–American study concluded that even at levels that are considered to pose little to no risk, lead may cause "adverse mental health outcomes". Its prevalence in the human body—at an adult average of 120 mg—is nevertheless exceeded only by zinc (2500 mg) and iron (4000 mg) among the heavy metals. Lead Salt (chemistry), salts are very efficiently absorbed by the body. A small amount of lead (1%) is stored in bones; the rest is excreted in urine and feces within a few weeks of exposure. Only about a third of lead is excreted by a child. Continual exposure may result in the bioaccumulation of lead.


Toxicity

Lead is a highly poisonous metal (whether inhaled or swallowed), affecting almost every organ and system in the human body. At airborne levels of 100 mg/m3, it is IDLH, immediately dangerous to life and health. Most ingested lead is absorbed into the bloodstream. The primary cause of its toxicity is its predilection for interfering with the proper functioning of enzymes. It does so by binding to the sulfhydryl groups found on many enzymes, or mimicking and displacing other metals which act as cofactor (biochemistry), cofactors in many enzymatic reactions. Among the essential metals that lead interacts with are calcium, iron, and zinc. High levels of calcium and iron tend to provide some protection from lead poisoning; low levels cause increased susceptibility.


Effects

Lead can cause severe damage to the brain and kidneys and, ultimately, death. By mimicking calcium, lead can cross the blood–brain barrier. It degrades the myelin sheaths of neurons, reduces their numbers, interferes with neurotransmitter, neurotransmission routes, and decreases neuronal growth. In the human body, lead inhibits porphobilinogen synthase and ferrochelatase, preventing both porphobilinogen formation and the incorporation of iron into protoporphyrin IX, the final step in heme synthesis. This causes ineffective heme synthesis and microcytic anemia. Symptoms of lead poisoning include nephropathy, colic-like abdominal pains, and possibly weakness in the fingers, wrists, or ankles. Small blood pressure increases, particularly in middle-aged and older people, may be apparent and can cause anemia. Several studies, mostly cross-sectional, found an association between increased lead exposure and decreased heart rate variability. In pregnant women, high levels of exposure to lead may cause miscarriage. Chronic, high-level exposure has been shown to reduce fertility in males. In a child's developing brain, lead interferes with synapse formation in the cerebral cortex, neurochemical development (including that of neurotransmitters), and the organization of ion channels. Early childhood exposure has been linked with an increased risk of sleep disturbances and excessive daytime drowsiness in later childhood. High blood levels are associated with delayed puberty in girls. The rise and fall in exposure to airborne lead from the combustion of tetraethyl lead in gasoline during the 20th century has been linked with historical increases and decreases in crime levels.


Exposure sources

Lead exposure is a global issue since lead mining and smelting, and battery manufacturing/disposal/recycling, are common in many countries. Lead enters the body via inhalation, ingestion, or skin absorption. Almost all inhaled lead is absorbed into the body; for ingestion, the rate is 20–70%, with children absorbing a higher percentage than adults. Poisoning typically results from ingestion of food or water contaminated with lead, and less commonly after accidental ingestion of contaminated soil, dust, or lead-based paint. Seawater products can contain lead if affected by nearby industrial waters. Fruit and vegetables can be contaminated by high levels of lead in the soils they were grown in. Soil can be contaminated through particulate accumulation from lead in pipes, lead paint, and residual emissions from leaded gasoline. The use of lead for water pipes is plumbosolvency, a problem in areas with soft or acidic water. Hard water forms insoluble layers in the pipes whereas soft and acidic water dissolves the lead pipes. Dissolved carbon dioxide in the carried water may result in the formation of soluble lead bicarbonate; oxygenated water may similarly dissolve lead as lead(II) hydroxide. Drinking such water, over time, can cause health problems due to the toxicity of the dissolved lead. The hard water, harder the water the more calcium bicarbonate and calcium sulfate, sulfate it will contain, and the more the inside of the pipes will be coated with a protective layer of lead carbonate or lead sulfate. Ingestion of applied lead-based paint is the major source of exposure for children: a direct source is chewing on old painted window sills. Alternatively, as the applied dry paint deteriorates, it peels, is pulverized into dust and then enters the body through hand-to-mouth contact or contaminated food, water, or alcohol. Ingesting certain Traditional medicine#Home remedies, home remedies may result in exposure to lead or its compounds. Inhalation is the second major exposure pathway, affecting smokers and especially workers in lead-related occupations. Cigarette smoke contains, among other toxic substances, radioactive lead-210. Skin exposure may be significant for people working with organic lead compounds. The rate of skin absorption is lower for inorganic lead.


Treatment

Treatment for lead poisoning normally involves the administration of dimercaprol and succimer. Acute cases may require the use of disodium calcium edetate, the calcium chelate, and the disodium salt of ethylenediaminetetraacetic acid (EDTA). It has a greater affinity for lead than calcium, with the result that lead chelate is formed by exchange and excreted in the urine, leaving behind harmless calcium.


Environmental effects

The extraction, production, use, and disposal of lead and its products have caused significant contamination of the Earth's soils and waters. Atmospheric emissions of lead were at their peak during the Industrial Revolution, and the leaded gasoline period in the second half of the twentieth century. Lead releases originate from natural sources (i.e., concentration of the naturally occurring lead), industrial production, incineration and recycling, and mobilization of previously buried lead. Elevated concentrations of lead persist in soils and sediments in post-industrial and urban areas; industrial emissions, including those arising from coal burning, continue in many parts of the world, particularly in the developing countries. Lead can accumulate in soils, especially those with a high organic content, where it remains for hundreds to thousands of years. Environmental lead can compete with other metals found in and on plants surfaces potentially inhibiting photosynthesis and at high enough concentrations, negatively affecting plant growth and survival. Contamination of soils and plants can allow lead to ascend the food chain affecting microorganisms and animals. In animals, lead exhibits toxicity in many organs, damaging the nervous, kidney, renal, reproductive, hematopoiesis, hematopoietic, and cardiovascular systems after ingestion, inhalation, or skin absorption. Fish uptake lead from both water and sediment; bioaccumulation in the food chain poses a hazard to fish, birds, and sea mammals. Anthropogenic lead includes lead from Shot (pellet), shot and Fishing sinker, sinkers. These are among the most potent sources of lead contamination along with lead production sites. Lead was banned for shot and sinkers in the United States in 2017, although that ban was only effective for a month, and a similar ban is being considered in the European Union. Analytical methods for the determination of lead in the environment include spectrophotometry, X-ray fluorescence, atomic spectroscopy and electrochemistry, electrochemical methods. A specific ion-selective electrode has been developed based on the ionophore S,S'-methylenebis (N,N-diisobutyldithiocarbamate). An important biomarker assay for lead poisoning is δ-aminolevulinic acid levels in plasma, serum, and urine.


Restriction and remediation

By the mid-1980s, there was significant decline in the use of lead in industry. In the United States, environmental regulations reduced or eliminated the use of lead in non-battery products, including gasoline, paints, solders, and water systems. Particulate control devices were installed in coal-fired power plants to capture lead emissions. In 1992, U.S. Congress required the Environmental Protection Agency to reduce the blood lead levels of the country's children. Lead use was further curtailed by the European Union's 2003 Restriction of Hazardous Substances Directive. A large drop in lead deposition occurred in the Netherlands after the 1993 national ban on use of lead shot for hunting and sport shooting: from 230 tonnes in 1990 to 47.5 tonnes in 1995. In the United States, the permissible exposure limit for lead in the workplace, comprising metallic lead, inorganic lead compounds, and lead soaps, was set at 50 μg/m3 over an 8-hour workday, and the blood lead level limit at 5 μg per 100 g of blood in 2012. Lead may still be found in harmful quantities in stoneware, Vinyl group, vinyl (such as that used for tubing and the insulation of electrical cords), and Chinese brass. Old houses may still contain lead paint. White lead paint has been White Lead (Painting) Convention, 1921, withdrawn from sale in industrialized countries, but specialized uses of other pigments such as yellow lead chromate remain. Stripping old paint by sanding produces dust which can be inhaled. Lead abatement programs have been mandated by some authorities in properties where young children live. Lead waste, depending on the jurisdiction and the nature of the waste, may be treated as household waste (to facilitate lead abatement activities), or potentially hazardous waste requiring specialized treatment or storage. Lead is released into the environment in shooting places and a number of lead management practices have been developed to counter the lead contamination. Lead migration can be enhanced in acidic soils; to counter that, it is advised soils be treated with lime to neutralize the soils and prevent leaching of lead. Research has been conducted on how to remove lead from biosystems by biological means: Fish bones are being researched for their ability to bioremediation, bioremediate lead in contaminated soil. The fungus ''Aspergillus versicolor'' is effective at absorbing lead ions from industrial waste before being released to water bodies. Several bacteria have been researched for their ability to remove lead from the environment, including the sulfate-reducing bacteria ''Desulfovibrio'' and ''Desulfotomaculum'', both of which are highly effective in aqueous solutions.


See also

* Derek Bryce-Smith one of the earliest campaigners against lead in petrol in the UK * Thomas Midgley Jr. – discovered that the addition of tetraethyllead to gasoline prevented Engine knocking, "knocking" in internal combustion engines * Clair Patterson - was instrumental in the banning of tetraethyllead in gasoline in the US and lead solder in food cans. * Robert A. Kehoe - foremost medical advocate for the use of tetraethyllead as an additive in gasoline.


Notes


References


Bibliography

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *Wood J. R., Hsu, Y-T and Bell, C. 2021 Sending Laurion Back to the Future: Bronze Age Silver and the Source of Confusion, Internet Archaeology 56. https://doi.org/10.11141/ia.56.9 * * * * * * * * * * * * *


Further reading

*
Table of contents
*


External links


The Toxicology of Heavy Metals: Getting the Lead Out
American Society for Clinical Pathology {{Authority control Lead, Chemical elements Post-transition metals Native element minerals Superconductors Endocrine disruptors IARC Group 2B carcinogens Nuclear reactor coolants Chemical elements with face-centered cubic structure