kinetic perfection
   HOME

TheInfoList



OR:

A diffusion-limited enzyme catalyses a reaction so efficiently that the
rate limiting step In chemical kinetics, the overall rate of a reaction is often approximately determined by the slowest step, known as the rate-determining step (RDS or RD-step or r/d step) or rate-limiting step. For a given reaction mechanism, the prediction of the ...
is that of substrate
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
into the active site, or
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
diffusion out. This is also known as kinetic perfection or catalytic perfection. Since the rate of catalysis of such enzymes is set by the
diffusion-controlled reaction Diffusion-controlled (or diffusion-limited) reactions are reactions in which the reaction rate is equal to the rate of transport of the reactants through the reaction medium (usually a solution). The process of chemical reaction can be considered ...
, it therefore represents an intrinsic, physical constraint on evolution (a maximum peak height in the
fitness landscape Fitness may refer to: * Physical fitness, a state of health and well-being of the body * Fitness (biology), an individual's ability to propagate its genes * Fitness (cereal), a brand of breakfast cereals and granola bars * ''Fitness'' (magazine), ...
). Diffusion limited perfect enzymes are very rare. Most enzymes catalyse their reactions to a rate that is 1,000-10,000 times slower than this limit. This is due to both the chemical limitations of difficult reactions, and the evolutionary limitations that such high reaction rates do not confer any extra fitness.


History

The theory of diffusion-controlled reaction was originally utilized by R.A. Alberty,
Gordon Hammes Gordon G. Hammes (born 1934 in Fond du Lac, Wisconsin) is a distinguished service professor of biochemistry, emeritus, at Duke University, professor emeritus at Cornell University, and member of United States National Academy of Sciences. Hammes ...
, and
Manfred Eigen Manfred Eigen (; 9 May 1927 – 6 February 2019) was a German biophysical chemist who won the 1967 Nobel Prize in Chemistry for work on measuring fast chemical reactions. Eigen's research helped solve major problems in physical chemistry and ...
to estimate the upper limit of enzyme-substrate reaction. According to their estimation, the upper limit of enzyme-substrate reaction was 109 M−1 s−1. In 1972, it was observed that in the dehydration of H2CO3 catalyzed by carbonic anhydrase, the second-order rate constant obtained experimentally was about 1.5 × 1010 M−1 s−1, which was one order of magnitude higher than the upper limit estimated by Alberty, Hammes, and Eigen based on a simplified model. To address such a paradox, Kuo-Chen Chou and his co-workers proposed a model by taking into account the spatial factor and force field factor between the enzyme and its substrate and found that the upper limit could reach 1010 M−1 s−1, and can be used to explain some surprisingly high reaction rates in molecular biology. The new upper limit found by Chou et al. for enzyme-substrate reaction was further discussed and analyzed by a series of follow-up studies. A detailed comparison between the simplified Alberty-Hammes-Eigen's model (a) and the Chou's model (b) in calculating the diffusion-controlled reaction rate of enzyme with its substrate, or the upper limit of enzyme-substrate reaction, was elaborated in the paper.


Mechanism

Kinetically perfect enzymes have a specificity constant, ''k''cat/''K''m, on the order of 108 to 109 M−1 s−1. The rate of the enzyme-catalysed reaction is limited by
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
and so the enzyme 'processes' the substrate well before it encounters another molecule. Some enzymes operate with kinetics which are faster than diffusion rates, which would seem to be impossible. Several mechanisms have been invoked to explain this phenomenon. Some proteins are believed to accelerate catalysis by drawing their substrate in and preorienting them by using dipolar electric fields. Some invoke a quantum-mechanical tunneling explanation whereby a proton or an electron can tunnel through activation barriers. If the proton tunneling theory remained a controversial idea, it has been proven to be the only possible mechanism in the case of the soybean lipoxygenase.


Evolution

It is worth noting that there are not many kinetically perfect enzymes. This can be explained in terms of
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Cha ...
. An increase in catalytic speed may be favoured as it could confer some advantage to the organism. However, when the catalytic speed outstrips diffusion speed (i.e. substrates entering and leaving the active site, and also encountering substrates) there is no more advantage to increase the speed even further. The diffusion limit represents an absolute physical constraint on evolution. Increasing the catalytic speed past the diffusion speed will not aid the organism in any way and so represents a global maximum in a
fitness landscape Fitness may refer to: * Physical fitness, a state of health and well-being of the body * Fitness (biology), an individual's ability to propagate its genes * Fitness (cereal), a brand of breakfast cereals and granola bars * ''Fitness'' (magazine), ...
. Therefore, these perfect enzymes must have come about by 'lucky' random
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA replication, DNA or viral repl ...
which happened to spread, or because the faster speed was once useful as part of a different reaction in the enzyme's ancestry.


Examples

* Acetylcholinesterase *
β-lactamase Beta-lactamases, (β-lactamases) are enzymes () produced by bacteria that provide multi-resistance to beta-lactam antibiotics such as penicillins, cephalosporins, cephamycins, monobactams and carbapenems ( ertapenem), although carbapenems ...
* Catalase * Carbonic anhydrase * Carbon monoxide dehydrogenase *
Cytochrome c peroxidase Cytochrome ''c'' peroxidase, or CCP, is a water-soluble heme-containing enzyme of the peroxidase family that takes reducing equivalents from cytochrome ''c'' and reduces hydrogen peroxide to water: :CCP + H2O2 + 2 ferrocytochrome ''c'' + 2H+ → ...
*
Fumarase Fumarase (or fumarate hydratase) is an enzyme () that catalyzes the reversible hydration/dehydration of fumarate to malate. Fumarase comes in two forms: mitochondrial and cytosolic. The mitochondrial isoenzyme is involved in the Krebs cycle and ...
* Superoxide dismutase *
Triosephosphate isomerase Triose-phosphate isomerase (TPI or TIM) is an enzyme () that catalyzes the reversible interconversion of the triose phosphate isomers dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate. TPI plays an important role in glycolysis and ...


See also

*
Diffusion-controlled reaction Diffusion-controlled (or diffusion-limited) reactions are reactions in which the reaction rate is equal to the rate of transport of the reactants through the reaction medium (usually a solution). The process of chemical reaction can be considered ...
*
Enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
** Enzyme catalysis ** Enzyme kinetics ** Enzyme engineering


References

{{Enzymes Catalysis Enzyme kinetics Chemical reaction engineering