HOME

TheInfoList



OR:

In
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
, a kinase () is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
that catalyzes the transfer of
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. This transesterification produces a phosphorylated substrate and
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Airp ...
. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and
ADP Adp or ADP may refer to: Aviation * Aéroports de Paris, airport authority for the Parisian region in France * Aeropuertos del Perú, airport operator for airports in northern Peru * SLAF Anuradhapura, an airport in Sri Lanka * Ampara Airp ...
gains a phosphate group (producing a dephosphorylated substrate and the high energy molecule of ATP). These two processes, phosphorylation and dephosphorylation, occur four times during
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
. Kinases are part of the larger family of phosphotransferases. Kinases should not be confused with phosphorylases, which catalyze the addition of inorganic phosphate groups to an acceptor, nor with phosphatases, which remove phosphate groups (dephosphorylation). The phosphorylation state of a molecule, whether it be a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
,
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids in ...
or
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may o ...
, can affect its activity, reactivity and its ability to bind other molecules. Therefore, kinases are critical in
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run ...
, cell signalling, protein regulation,
cellular transport A membrane transport protein (or simply transporter) is a membrane protein involved in the movement of ions, small molecules, and macromolecules, such as another protein, across a biological membrane. Transport proteins are integral transmembrane ...
, secretory processes and many other cellular pathways, which makes them very important to human physiology.


Biochemistry and functional relevance

Kinases mediate the transfer of a phosphate moiety from a high energy molecule (such as ATP) to their substrate molecule, as seen in the figure below. Kinases are needed to stabilize this reaction because the phosphoanhydride bond contains a high level of energy. Kinases properly orient their substrate and the phosphoryl group within their active sites, which increases the rate of the reaction. Additionally, they commonly use positively charged
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
residues, which electrostatically stabilize the transition state by interacting with the negatively charged phosphate groups. Alternatively, some kinases utilize bound metal cofactors in their active sites to coordinate the phosphate groups. Protein kinases can be classed as catalytically active (canonical) or as pseudokinases, reflecting the evolutionary loss of one or more of the catalytic amino acids that position or hydrolyse ATP. However, in terms of signalling outputs and disease relevance, both kinases and pseudokinases are important signalling modulators in human cells, making kinases very important drug targets. Kinases are used extensively to transmit signals and regulate complex processes in cells. Phosphorylation of molecules can enhance or inhibit their activity and modulate their ability to interact with other molecules. The addition and removal of phosphoryl groups provides the cell with a means of control because various kinases can respond to different conditions or signals. Mutations in kinases that lead to a loss-of-function or gain-of-function can cause cancer and disease in humans, including certain types of
leukemia Leukemia ( also spelled leukaemia and pronounced ) is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or ...
and
neuroblastoma Neuroblastoma (NB) is a type of cancer that forms in certain types of nerve tissue. It most frequently starts from one of the adrenal glands but can also develop in the neck, chest, abdomen, or spine. Symptoms may include bone pain, a lump in ...
s,
glioblastoma Glioblastoma, previously known as glioblastoma multiforme (GBM), is one of the most aggressive types of cancer that begin within the brain. Initially, signs and symptoms of glioblastoma are nonspecific. They may include headaches, personality ...
, spinocerebellar ataxia (type 14), forms of
agammaglobulinaemia Hypogammaglobulinemia is a problem with the immune system in which not enough gamma globulins are produced in the blood (thus '' hypo-'' + ''gamma'' + ''globulin'' + '' -emia''). This results in a lower antibody count, which impairs the immune sys ...
, and many others.


History and classification

The first protein to be recognized as catalyzing the phosphorylation of another protein using ATP was observed in 1954 by Eugene P. Kennedy at which time he described a liver enzyme that catalyzed the phosphorylation of casein. In 1956, Edmond H. Fischer and Edwin G. Krebs discovered that the interconversion between phosphorylase a and phosphorylase b was mediated by phosophorylation and dephosphorylation. The kinase that transferred a phosphoryl group to Phosphorylase b, converting it to Phosphorylase a, was named Phosphorylase Kinase. Years later, the first example of a kinase cascade was identified, whereby Protein Kinase A (PKA) phosphorylates Phosphorylase Kinase. At the same time, it was found that PKA inhibited
glycogen synthase Glycogen synthase (UDP-glucose-glycogen glucosyltransferase) is a key enzyme in glycogenesis, the conversion of glucose into glycogen. It is a glycosyltransferase () that catalyses the reaction of UDP-glucose and (1,4--D-glucosyl)n to yield ...
, which was the first example of a phosphorylation event that resulted in inhibition. In 1969, Lester Reed discovered that pyruvate dehydrogenase was inactivated by phosphorylation, and this discovery was the first clue that phosphorylation might serve as a means of regulation in other metabolic pathways besides glycogen metabolism. In the same year, Tom Langan discovered that PKA phosphorylates histone H1, which suggested phosphorylation might regulate nonenzymatic proteins. The 1970s included the discovery of calmodulin-dependent protein kinases and the finding that proteins can be phosphorylated on more than one amino acid residue. The 1990s may be described as the "decade of protein kinase cascades". During this time, the MAPK/ERK pathway, the JAK kinases (a family of protein tyrosine kinases), and the PIP3-dependent kinase cascade were discovered. Kinases are classified into broad groups by the substrate they act upon: protein kinases, lipid kinases, carbohydrate kinases. Kinases can be found in a variety of species, from bacteria to mold to worms to mammals. More than five hundred different kinases have been identified in humans. Their diversity and their role in signaling makes them an interesting object of study. Various other kinases act on small molecules such as
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids in ...
s,
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may o ...
s,
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha ...
s, and
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecu ...
s, either for signaling or to prime them for metabolic pathways. Specific kinases are often named after their substrates. Protein kinases often have multiple substrates, and proteins can serve as substrates for more than one specific kinase. For this reason protein kinases are named based on what regulates their activity (i.e. Calmodulin-dependent protein kinases). Sometimes they are further subdivided into categories because there are several isoenzymatic forms. For example, type I and type II cyclic-AMP dependent protein kinases have identical catalytic subunits but different regulatory subunits that bind cyclic AMP.


Protein kinases

Protein kinases act on proteins, by phosphorylating them on their serine, threonine, tyrosine, or histidine residues. Phosphorylation can modify the function of a protein in many ways. It can increase or decrease a protein's activity, stabilize it or mark it for destruction, localize it within a specific cellular compartment, and it can initiate or disrupt its interaction with other proteins. The protein kinases make up the majority of all kinases and are widely studied. These kinases, in conjunction with phosphatases, play a major role in protein and
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
regulation as well as signalling in the cell. A common point of confusion arises when thinking about the different ways a cell achieves biological regulation. There are countless examples of covalent modifications that cellular proteins can undergo; however, phosphorylation is one of the few reversible covalent modifications. This provided the rationale that phosphorylation of proteins is regulatory. The potential to regulate protein function is enormous given that there are many ways to covalently modify a protein in addition to regulation provided by allosteric control. In his Hopkins Memorial Lecture, Edwin Krebs asserted that allosteric control evolved to respond to signals arising from inside the cell, whereas phosphorylation evolved to respond to signals outside of the cell. This idea is consistent with the fact that phosphorylation of proteins occurs much more frequently in
eukaryotic cells Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bact ...
in comparison to prokaryotic cells because the more complex cell type evolved to respond to a wider array of signals.


Cyclin dependent kinases

Cyclin dependent kinase Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They a ...
s (CDKs) are a group of several different kinases involved in regulation of the
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
. They phosphorylate other proteins on their serine or threonine residues, but CDKs must first bind to a cyclin protein in order to be active. Different combinations of specific CDKs and cyclins mark different parts of the cell cycle. Additionally, the phosphorylation state of CDKs is also critical to their activity, as they are subject to regulation by other kinases (such as CDK-activating kinase) and
phosphatases In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid monoester into a phosphate ion and an alcohol. Because a phosphatase enzyme catalyzes the hydrolysis of its substrate, it is a subcategory of hydrolases. P ...
(such as Cdc25). Once the CDKs are active, they phosphorylate other proteins to change their activity, which leads to events necessary for the next stage of the cell cycle. While they are most known for their function in cell cycle control, CDKs also have roles in transcription, metabolism, and other cellular events. Because of their key role in the controlling cell division, mutations in CDKs are often found in cancerous cells. These mutations lead to uncontrolled growth of the cells, where they are rapidly going through the whole cell cycle repeatedly. CDK mutations can be found in
lymphoma Lymphoma is a group of blood and lymph tumors that develop from lymphocytes (a type of white blood cell). In current usage the name usually refers to just the cancerous versions rather than all such tumours. Signs and symptoms may include en ...
s,
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or ...
, pancreatic
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
s, and
lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissues of the lung. Lung carcinomas derive from transformed, mali ...
. Therefore, inhibitors of CDK have been developed as treatments for some types of cancer.


Mitogen-activated protein kinases

MAP kinases (MAPKs) are a family of serine/threonine kinases that respond to a variety of extracellular growth signals. For example, growth hormone, epidermal growth factor, platelet-derived growth factor, and insulin are all considered mitogenic stimuli that can engage the MAPK pathway. Activation of this pathway at the level of the receptor initiates a signaling cascade whereby the Ras GTPase exchanges GDP for GTP. Next, Ras activates Raf kinase (also known as MAPKKK), which activates MEK (MAPKK). MEK activates MAPK (also known as ERK), which can go on to regulate transcription and
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
. Whereas RAF and MAPK are both serine/threonine kinases, MAPKK is a tyrosine/threonine kinase. MAPK can regulate transcription factors directly or indirectly. Its major transcriptional targets include ATF-2, Chop, c-Jun, c-Myc, DPC4, Elk-1, Ets1, Max, MEF2C, NFAT4, Sap1a, STATs, Tal, p53, CREB, and Myc. MAPK can also regulate translation by phosphorylating the S6 kinase in the large ribosomal subunit. It can also phosphorylate components in the upstream portion of the MAPK signalling cascade including Ras, Sos, and the EGF receptor itself. The carcinogenic potential of the MAPK pathway makes it clinically significant. It is implicated in cell processes that can lead to uncontrolled growth and subsequent tumor formation. Mutations within this pathway alter its regulatory effects on
cell differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular ...
, proliferation, survival, and
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes ( morphology) and death. These changes in ...
, all of which are implicated in various forms of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
.


Lipid kinases

Lipid kinases phosphorylate lipids in the cell, both on the plasma membrane as well as on the membranes of the organelles. The addition of phosphate groups can change the reactivity and localization of the lipid and can be used in signal transmission.


Phosphatidylinositol kinases

Phosphatidylinositol kinases phosphorylate
phosphatidylinositol Phosphatidylinositol (or Inositol Phospholipid) consists of a family of lipids as illustrated on the right, where red is x, blue is y, and black is z, in the context of independent variation, a class of the phosphatidylglycerides. In such molecul ...
species, to create species such as phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2),
phosphatidylinositol 3,4,5-trisphosphate Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)''P''3), abbreviated PIP3, is the product of the class I phosphoinositide 3-kinases (PI 3-kinases) phosphorylation of phosphatidylinositol (4,5)-bisphosphate (PIP2). It is a phospholipid tha ...
(PIP3), and
phosphatidylinositol 3-phosphate Phosphatidylinositol 3-phosphate (PtdIns3''P'') is a phospholipid found in cell membranes that helps to recruit a range of proteins, many of which are involved in protein trafficking, to the membranes. It is the product of both the class II and II ...
(PI3P). The kinases include phosphoinositide 3-kinase (PI3K), phosphatidylinositol-4-phosphate 3-kinase, and phosphatidylinositol-4,5-bisphosphate 3-kinase. The phosphorylation state of phosphatidylinositol plays a major role in
cellular signalling In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular ...
, such as in the insulin signalling pathway, and also has roles in endocytosis, exocytosis and other trafficking events. Mutations in these kinases, such as PI3K, can lead to
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
or insulin resistance. The kinase enzymes increase the rate of the reactions by making the inositol hydroxyl group more nucleophilic, often using the side chain of an amino acid residue to act as a general base and deprotonate the hydroxyl, as seen in the mechanism below. Here, a reaction between adenosine triphosphate (ATP) and phosphatidylinositol is coordinated. The end result is a phosphatidylinositol-3-phosphate as well as adenosine diphosphate (ADP). The enzymes can also help to properly orient the ATP molecule, as well as the inositol group, to make the reaction proceed faster. Metal ions are often coordinated for this purpose.


Sphingosine kinases

Sphingosine kinase (SK) is a lipid kinase that catalyzes the conversion of sphingosine to sphingosine-1-phosphate (S1P). Sphingolipids are ubiquitous membrane lipids. Upon activation, sphingosine kinase migrates from the cytosol to the plasma membrane where it transfers a γ phosphate (which is the last or terminal phosphate) from ATP or GTP to sphingosine. The S1P receptor is a GPCR receptor, so S1P has the ability to regulate G protein signaling. The resulting signal can activate intracellular effectors like ERKs,
Rho GTPase The Rho family of GTPases is a family of small (~21 kDa) signaling G proteins, and is a subfamily of the Ras superfamily. The members of the Rho GTPase family have been shown to regulate many aspects of intracellular actin dynamics, and are found ...
, Rac GTPase, PLC, and AKT/PI3K. It can also exert its effect on target molecules inside the cell. S1P has been shown to directly inhibit the histone deacetylase activity of
HDAC Histone deacetylases (, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around his ...
s. In contrast, the dephosphorylated sphingosine promotes cell
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes ( morphology) and death. These changes in ...
, and it is therefore critical to understand the regulation of SKs because of its role in determining cell fate. Past research shows that SKs may sustain cancer cell growth because they promote cellular-proliferation, and SK1 (a specific type of SK) is present at higher concentrations in certain types of cancers. There are two kinases present in mammalian cells, SK1 and SK2. SK1 is more specific compared to SK2, and their expression patterns differ as well. SK1 is expressed in lung, spleen, and leukocyte cells, whereas SK2 is expressed in kidney and liver cells. The involvement of these two kinases in cell survival, proliferation, differentiation, and
inflammation Inflammation (from la, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molec ...
makes them viable candidates for chemotherapeutic therapies.


Carbohydrate kinases

For many mammals, carbohydrates provide a large portion of the daily caloric requirement. To harvest energy from
oligosaccharide An oligosaccharide (/ˌɑlɪgoʊˈsækəˌɹaɪd/; from the Greek ὀλίγος ''olígos'', "a few", and σάκχαρ ''sácchar'', "sugar") is a saccharide polymer containing a small number (typically two to ten) of monosaccharides (simple sug ...
s, they must first be broken down into monosaccharides so they can enter
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run ...
. Kinases play an important role in almost all metabolic pathways. The figure on the left shows the second phase of
glycolysis Glycolysis is the metabolic pathway that converts glucose () into pyruvate (). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH ...
, which contains two important reactions catalyzed by kinases. The anhydride linkage in 1,3 bisphosphoglycerate is unstable and has a high energy. 1,3-bisphosphogylcerate kinase requires ADP to carry out its reaction yielding 3-phosphoglycerate and ATP. In the final step of glycolysis, pyruvate kinase transfers a phosphoryl group from phosphoenolpyruvate to ADP, generating ATP and pyruvate.
Hexokinase A hexokinase is an enzyme that phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important product. Hexo ...
is the most common enzyme that makes use of glucose when it first enters the cell. It converts D-glucose to glucose-6-phosphate by transferring the gamma phosphate of an ATP to the C6 position. This is an important step in glycolysis because it traps glucose inside the cell due to the negative charge. In its dephosphorylated form, glucose can move back and forth across the membrane very easily. Mutations in the hexokinase gene can lead to a hexokinase deficiency which can cause nonspherocytic hemolytic
anemia Anemia or anaemia (British English) is a blood disorder in which the blood has a reduced ability to carry oxygen due to a lower than normal number of red blood cells, or a reduction in the amount of hemoglobin. When anemia comes on slowly, t ...
. Phosphofructokinase, or PFK, catalyzes the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate and is an important point in the regulation of glycolysis. High levels of ATP, H+, and citrate inhibit PFK. If citrate levels are high, it means that glycolysis is functioning at an optimal rate. High levels of AMP stimulate PFK. Tarui's disease, a glycogen storage disease that leads to exercise intolerance, is due to a mutation in the PFK gene that reduces its activity.


Other kinases

Kinases act upon many other molecules besides proteins, lipids, and carbohydrates. There are many that act on nucleotides (DNA and RNA) including those involved in nucleotide interconverstion, such as nucleoside-phosphate kinases and
nucleoside-diphosphate kinase Nucleoside-diphosphate kinases (NDPKs, also NDP kinase, (poly)nucleotide kinases and nucleoside diphosphokinases) are enzymes that catalyze the exchange of terminal phosphate between different nucleoside diphosphates (NDP) and triphosphates (NTP) ...
s. Other small molecules that are substrates of kinases include creatine,
phosphoglycerate Phosphoglycerate may refer to: * 2-Phosphoglycerate * 3-Phosphoglycerate 3-Phosphoglyceric acid (3PG, 3-PGA, or PGA) is the conjugate acid of 3-phosphoglycerate or glycerate 3-phosphate (GP or G3P). This glycerate is a biochemically significant ...
, riboflavin, dihydroxyacetone,
shikimate Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical metabolite in plants and microorganisms. Its name comes from the Japanese flower ''shik ...
, and many others.


Riboflavin kinase

Riboflavin kinase catalyzes the phosphorylation of riboflavin to create flavin mononucleotide(FMN). It has an ordered binding mechanism where riboflavin must bind to the kinase before it binds to the ATP molecule. Divalent cations help coordinate the
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecu ...
. The general mechanism is shown in the figure below. Riboflavin kinase plays an important role in cells, as FMN is an important cofactor. FMN also is a precursor to
flavin adenine dinucleotide Flavin may refer to: Placename * Flavin, Aveyron, a commune in southern France Surname * Adrian Flavin (born 1979), a professional rugby player * Christopher Flavin, president of the Worldwatch Institute * Dan Flavin (1933–1996), a minimalis ...
(FAD), a
redox cofactor A cofactor is a non- protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can be considered "helper molecules" that as ...
used by many enzymes, including many in
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run ...
. In fact, there are some enzymes that are capable of carrying out both the phosphorylation of riboflavin to FMN, as well as the FMN to FAD reaction. Riboflavin kinase may help prevent stroke, and could possibly be used as a treatment in the future. It is also implicated in infection, when studied in mice.


Thymidine kinase

Thymidine kinase is one of the many nucleoside kinases that are responsible for nucleoside phosphorylation. It phosphorylates thymidine to create thymidine monophosphate (dTMP). This kinase uses an ATP molecule to supply the
phosphate In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid . The phosphate or orthophosphate ion is derived from phosph ...
to thymidine, as shown below. This transfer of a phosphate from one nucleotide to another by thymidine kinase, as well as other nucleoside and nucleotide kinases, functions to help control the level of each of the different nucleotides. After creation of the dTMP molecule, another kinase, thymidylate kinase, can act upon dTMP to create the diphosphate form, dTDP. Nucleoside diphosphate kinase catalyzes production of thymidine triphosphate, dTTP, which is used in DNA synthesis. Because of this, thymidine kinase activity is closely correlated with the
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
and used as a tumor marker in
clinical chemistry Clinical chemistry (also known as chemical pathology, clinical biochemistry or medical biochemistry) is the area of chemistry that is generally concerned with analysis of bodily fluids for diagnostic and therapeutic purposes. It is an applied ...
. Therefore, it can sometime be used to predict patient prognosis. Patients with mutations in the thymidine kinase
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
may have a certain type of
mitochondrial DNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial D ...
depletion syndrome, a disease that leads to death in early childhood.


See also

* Activation loop *
Autophosphorylation Autophosphorylation is a type of post-translational modification of proteins. It is generally defined as the phosphorylation of the kinase by itself. In eukaryotes, this process occurs by the addition of a phosphate group to serine, threonine o ...
* Ca2+/calmodulin-dependent protein kinase *
Cell signaling In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
*
Cyclin-dependent kinase Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They ...
*
G protein-coupled receptor G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
*
Nucleoside-diphosphate kinase Nucleoside-diphosphate kinases (NDPKs, also NDP kinase, (poly)nucleotide kinases and nucleoside diphosphokinases) are enzymes that catalyze the exchange of terminal phosphate between different nucleoside diphosphates (NDP) and triphosphates (NTP) ...
* Phosphatase * Phosphatidylinositol phosphate kinases * Phospholipid * Phosphoprotein *
Phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
* Phosphotransferase * Signal transduction * Thymidine kinase * Thymidine kinase in clinical chemistry * Thymidylate kinase * Wall-associated kinase


References

{{Portal bar, Biology, border=no EC 2.7.1