HOME

TheInfoList



OR:

The invariable plane of a planetary system, also called Laplace's invariable plane, is the plane passing through its
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
(center of mass) perpendicular to its
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
. In the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
, about 98% of this effect is contributed by the orbital angular momenta of the four jovian planets (
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
, Saturn,
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus ( Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of ...
, and Neptune). The invariable plane is within 0.5° of the orbital plane of Jupiter, and may be regarded as the weighted average of all planetary orbital and rotational planes. This plane is sometimes called the "Laplacian" or "Laplace plane" or the "invariable plane of Laplace", though it should not be confused with the
Laplace plane The Laplace plane or Laplacian plane of a planetary satellite, named after its discoverer Pierre-Simon Laplace (1749–1827), is a mean or reference plane about whose axis the instantaneous orbital plane of that satellite precesses. Laplace's ...
, which is the plane about which the individual orbital planes of planetary satellites
precess Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In othe ...
. Both derive from the work of (and are at least sometimes named for) the French
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets and galaxies – in either ...
Pierre Simon Laplace Pierre-Simon, marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized ...
. — English translation published in four volumes, 1829–1839; : originally published as
in five volumes.
The two are equivalent only in the case where all perturbers and
resonances Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillat ...
are far from the precessing body. The invariable plane is derived from the sum of angular momenta, and is "invariable" over the entire system, while the Laplace plane for different orbiting objects within a system may be different. Laplace called the invariable plane the ''plane of maximum areas'', where the "area" in this case is the product of the radius and its time rate of change , that is, its radial velocity, multiplied by the mass.


Description

The magnitude of the orbital
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
vector of a planet is where R is the orbital radius of the planet (from the
barycenter In astronomy, the barycenter (or barycentre; ) is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important con ...
), M is the mass of the planet, and \dot is its orbital angular velocity. That of Jupiter contributes the bulk of the Solar System's angular momentum, 60.3%. Then comes Saturn at 24.5%, Neptune at 7.9%, and Uranus at 5.3%. The
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
forms a counterbalance to all of the planets, so it is near the barycenter when Jupiter is on one side and the other three jovian planets are
diametrically opposite In mathematics, antipodal points of a sphere are those diametrically opposite to each other (the specific qualities of such a definition are that a line drawn from the one to the other passes through the center of the sphere so forms a true d ...
on the other side, but the Sun moves to 2.17  away from the barycenter when all jovian planets are in line on the other side. The orbital angular momenta of the Sun and all non-jovian planets, moons, and
small Solar System bodies A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, ...
, as well as the axial rotation momenta of all bodies, including the Sun, total only about 2%. If all Solar System bodies were point masses, or were rigid bodies having spherically symmetric mass distributions, and further if there were no external effects due to the uneven gravitation of the
Milky Way Galaxy The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
, then an invariable plane defined on orbits alone would be truly invariable and would constitute an inertial frame of reference. But almost all are not, allowing the transfer of a very small amount of momenta from axial rotations to orbital revolutions due to tidal friction and to bodies being non-spherical. This causes a change in the magnitude of the orbital angular momentum, as well as a change in its direction (precession) because the rotational axes are not parallel to the orbital axes. Nevertheless, these changes are exceedingly small compared to the total angular momentum of the system, which is very nearly conserved despite these effects. For almost all purposes, the plane defined from the giant planets' orbits alone can be considered invariable when working in
Newtonian dynamics In physics, Newtonian dynamics (also known as Newtonian mechanics) is the study of the dynamics of a particle or a small body according to Newton's laws of motion. Mathematical generalizations Typically, the Newtonian dynamics occurs in a thre ...
, by also ignoring the even tinier amounts of angular momentum ejected in material and gravitational waves leaving the Solar System, and the extremely tiny torques exerted on the Solar System by other stars passing nearby,
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
galactic tides, etc.


References


Further reading

* {{DEFAULTSORT:Invariable Plane Dynamics of the Solar System Astronomical coordinate systems Planes