HOME

TheInfoList



OR:

In mathematics, hyperbolic geometry (also called Lobachevskian geometry or BolyaiLobachevskian geometry) is a
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean g ...
. The
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segmen ...
of
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with
Playfair's axiom In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate): ''In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the ...
, the modern version of
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
's
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segmen ...
.) Hyperbolic plane
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they
locally In mathematics, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some ''sufficiently small'' or ''arbitrarily small'' neighborhoods of points). P ...
resemble the hyperbolic plane. A modern use of hyperbolic geometry is in the theory of
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
, particularly the
Minkowski model In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of ''n''-dimensional hyperbolic geometry in which points are represented by points on the forward sheet ''S''+ of a two-sheeted hyperboloid ...
. When geometers first realised they were working with something other than the standard Euclidean geometry, they described their geometry under many different names;
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
finally gave the subject the name hyperbolic geometry to include it in the now rarely used sequence
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
( spherical geometry), parabolic geometry (
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
), and hyperbolic geometry. In the
former Soviet Union The post-Soviet states, also known as the former Soviet Union (FSU), the former Soviet Republics and in Russia as the near abroad (russian: links=no, ближнее зарубежье, blizhneye zarubezhye), are the 15 sovereign states that wer ...
, it is commonly called Lobachevskian geometry, named after one of its discoverers, the Russian geometer
Nikolai Lobachevsky Nikolai Ivanovich Lobachevsky ( rus, Никола́й Ива́нович Лобаче́вский, p=nʲikɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕɛfskʲɪj, a=Ru-Nikolai_Ivanovich_Lobachevsky.ogg; – ) was a Russian mathematician and geometer, kn ...
. This page is mainly about the 2-dimensional (planar) hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry. See
hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
for more information on hyperbolic geometry extended to three and more dimensions.


Properties


Relation to Euclidean geometry

Hyperbolic geometry is more closely related to Euclidean geometry than it seems: the only axiomatic difference is the
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segmen ...
. When the parallel postulate is removed from Euclidean geometry the resulting geometry is
absolute geometry Absolute geometry is a geometry based on an axiom system for Euclidean geometry without the parallel postulate or any of its alternatives. Traditionally, this has meant using only the first four of Euclid's postulates, but since these are not suf ...
. There are two kinds of absolute geometry, Euclidean and hyperbolic. All theorems of absolute geometry, including the first 28 propositions of book one of Euclid's ''Elements'', are valid in Euclidean and hyperbolic geometry. Propositions 27 and 28 of Book One of Euclid's ''Elements'' prove the existence of parallel/non-intersecting lines. This difference also has many consequences: concepts that are equivalent in Euclidean geometry are not equivalent in hyperbolic geometry; new concepts need to be introduced. Further, because of the
angle of parallelism In hyperbolic geometry, the angle of parallelism \Pi(a) , is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length ''a'' between the right angle an ...
, hyperbolic geometry has an
absolute scale There is no single definition of an absolute scale. In statistics and measurement theory, it is simply a ratio scale in which the unit of measurement is fixed, and values are obtained by counting. According to another definition it is a system of ...
, a relation between distance and angle measurements.


Lines

Single lines in hyperbolic geometry have exactly the same properties as single straight lines in Euclidean geometry. For example, two points uniquely define a line, and line segments can be infinitely extended. Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry. For example, two distinct lines can intersect in no more than one point, intersecting lines form equal opposite angles, and adjacent angles of intersecting lines are supplementary. When a third line is introduced, then there can be properties of intersecting lines that differ from intersecting lines in Euclidean geometry. For example, given two intersecting lines there are infinitely many lines that do not intersect either of the given lines. These properties are all independent of the
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
used, even if the lines may look radically different.


Non-intersecting / parallel lines

Non-intersecting lines in hyperbolic geometry also have properties that differ from non-intersecting lines in
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
: :For any line ''R'' and any point ''P'' which does not lie on ''R'', in the plane containing line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. This implies that there are through ''P'' an infinite number of coplanar lines that do not intersect ''R''. These non-intersecting lines are divided into two classes: * Two of the lines (''x'' and ''y'' in the diagram) are limiting parallels (sometimes called critically parallel, horoparallel or just parallel): there is one in the direction of each of the
ideal point In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line ''l'' and a point ''P'' not on ''l'', right- and left- limiting parallels to ''l'' through ''P' ...
s at the "ends" of ''R'', asymptotically approaching ''R'', always getting closer to ''R'', but never meeting it. * All other non-intersecting lines have a point of minimum distance and diverge from both sides of that point, and are called ''ultraparallel'', ''diverging parallel'' or sometimes ''non-intersecting.'' Some geometers simply use the phrase "''parallel'' lines" to mean "''limiting parallel'' lines", with ''ultraparallel'' lines meaning just ''non-intersecting''. These limiting parallels make an angle ''θ'' with ''PB''; this angle depends only on the Gaussian curvature of the plane and the distance ''PB'' and is called the
angle of parallelism In hyperbolic geometry, the angle of parallelism \Pi(a) , is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length ''a'' between the right angle an ...
. For ultraparallel lines, the ultraparallel theorem states that there is a unique line in the hyperbolic plane that is perpendicular to each pair of ultraparallel lines.


Circles and disks

In hyperbolic geometry, the circumference of a circle of radius ''r'' is greater than 2 \pi r . Let R = \frac , where K is the Gaussian curvature of the plane. In hyperbolic geometry, K is negative, so the square root is of a positive number. Then the circumference of a circle of radius ''r'' is equal to: :2\pi R \sinh \frac \,. And the area of the enclosed disk is: :4\pi R^2 \sinh^2 \frac = 2\pi R^2 \left(\cosh \frac - 1\right) \,. Therefore, in hyperbolic geometry the ratio of a circle's circumference to its radius is always strictly greater than 2\pi , though it can be made arbitrarily close by selecting a small enough circle. If the Gaussian curvature of the plane is −1 then the
geodesic curvature In Riemannian geometry, the geodesic curvature k_g of a curve \gamma measures how far the curve is from being a geodesic. For example, for 1D curves on a 2D surface embedded in 3D space, it is the curvature of the curve projected onto the surface's ...
of a circle of radius ''r'' is: \frac


Hypercycles and horocycles

In hyperbolic geometry, there is no line all of whose points are equidistant from another line. Instead, the points that all have the same orthogonal distance from a given line lie on a curve called a hypercycle. Another special curve is the
horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
, a curve whose
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
radii (
perpendicular In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the ''perpendicular symbol'', ⟂. It ca ...
lines) are all limiting parallel to each other (all converge asymptotically in one direction to the same
ideal point In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line ''l'' and a point ''P'' not on ''l'', right- and left- limiting parallels to ''l'' through ''P' ...
, the centre of the horocycle). Through every pair of points there are two horocycles. The centres of the horocycles are the
ideal point In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line ''l'' and a point ''P'' not on ''l'', right- and left- limiting parallels to ''l'' through ''P' ...
s of the
perpendicular bisector In geometry, bisection is the division of something into two equal or congruent parts, usually by a line, which is then called a ''bisector''. The most often considered types of bisectors are the ''segment bisector'' (a line that passes through ...
of the line-segment between them. Given any three distinct points, they all lie on either a line, hypercycle,
horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
, or circle. The length of the line-segment is the shortest length between two points. The arc-length of a hypercycle connecting two points is longer than that of the line segment and shorter than that of a horocycle, connecting the same two points. The arclength of both horocycles connecting two points are equal. The arc-length of a circle between two points is larger than the arc-length of a horocycle connecting two points. If the Gaussian curvature of the plane is −1 then the
geodesic curvature In Riemannian geometry, the geodesic curvature k_g of a curve \gamma measures how far the curve is from being a geodesic. For example, for 1D curves on a 2D surface embedded in 3D space, it is the curvature of the curve projected onto the surface's ...
of a horocycle is 1 and of a hypercycle is between 0 and 1.


Triangles

Unlike Euclidean triangles, where the angles always add up to π
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before tha ...
s (180°, a
straight angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
), in hyperbolic geometry the sum of the angles of a hyperbolic triangle is always strictly less than π
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before tha ...
s (180°, a
straight angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
). The difference is referred to as the
defect A defect is a physical, functional, or aesthetic attribute of a product or service that exhibits that the product or service failed to meet one of the desired specifications. Defect, defects or defected may also refer to: Examples * Angular defec ...
. The area of a hyperbolic triangle is given by its defect in radians multiplied by ''R''2. As a consequence, all hyperbolic triangles have an area that is less than or equal to ''R''2π. The area of a hyperbolic
ideal triangle In hyperbolic geometry an ideal triangle is a hyperbolic triangle whose three vertices all are ideal points. Ideal triangles are also sometimes called ''triply asymptotic triangles'' or ''trebly asymptotic triangles''. The vertices are sometime ...
in which all three angles are 0° is equal to this maximum. As in
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, each hyperbolic triangle has an
incircle In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. ...
. In hyperbolic geometry, if all three of its vertices lie on a
horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
or hypercycle, then the triangle has no
circumscribed circle In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polyg ...
. As in
spherical A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
and
elliptical geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines a ...
, in hyperbolic geometry if two triangles are similar, they must be congruent.


Regular apeirogon

A special polygon in hyperbolic geometry is the regular
apeirogon In geometry, an apeirogon () or infinite polygon is a generalized polygon with a countably infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes. In some literature, the term "apeirogon" may refer only to th ...
, a
uniform polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence o ...
with an infinite number of sides. In
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, the only way to construct such a polygon is to make the side lengths tend to zero and the apeirogon is indistinguishable from a circle, or make the interior angles tend to 180 degrees and the apeirogon approaches a straight line. However, in hyperbolic geometry, a regular apeirogon has sides of any length (i.e., it remains a polygon). The side and angle bisectors will, depending on the side length and the angle between the sides, be limiting or diverging parallel (see lines above). If the bisectors are limiting parallel the apeirogon can be inscribed and circumscribed by concentric
horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
s. If the bisectors are diverging parallel then a pseudogon (distinctly different from an apeirogon) can be inscribed in hypercycles (all vertices are the same distance of a line, the axis, also the midpoint of the side segments are all equidistant to the same axis.)


Tessellations

Like the Euclidean plane it is also possible to tessellate the hyperbolic plane with
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
s as
faces The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affe ...
. There are an infinite number of uniform tilings based on the
Schwarz triangles In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere ( spherical tiling), possibly overlapping, through reflections in its edges. They were classified in . These can be defined ...
(''p'' ''q'' ''r'') where 1/''p'' + 1/''q'' + 1/''r'' < 1, where ''p'', ''q'', ''r'' are each orders of reflection symmetry at three points of the
fundamental domain triangle In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere ( spherical tiling), possibly overlapping, through reflections in its edges. They were classified in . These can be defined m ...
, the symmetry group is a hyperbolic
triangle group In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangl ...
. There are also infinitely many uniform tilings that cannot be generated from Schwarz triangles, some for example requiring quadrilaterals as fundamental domains.


Standardized Gaussian curvature

Though hyperbolic geometry applies for any surface with a constant negative Gaussian curvature, it is usual to assume a scale in which the curvature ''K'' is −1. This results in some formulas becoming simpler. Some examples are: * The area of a triangle is equal to its angle defect in
radian The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before tha ...
s. * The area of a horocyclic sector is equal to the length of its horocyclic arc. * An arc of a
horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
so that a line that is tangent at one endpoint is limiting parallel to the radius through the other endpoint has a length of 1. * The ratio of the arc lengths between two radii of two concentric
horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
s where the horocycles are a distance 1 apart is ''e'' :1.


Cartesian-like coordinate systems

In hyperbolic geometry, the sum of the angles of a
quadrilateral In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
is always less than 360 degrees, and hyperbolic rectangles differ greatly from Euclidean rectangles since there are no equidistant lines, so a proper Euclidean rectangle would need to be enclosed by two lines and two hypercycles. These all complicate coordinate systems. There are however different coordinate systems for hyperbolic plane geometry. All are based around choosing a point (the origin) on a chosen directed line (the ''x''-axis) and after that many choices exist. The Lobachevski coordinates ''x'' and ''y'' are found by dropping a perpendicular onto the ''x''-axis. ''x'' will be the label of the foot of the perpendicular. ''y'' will be the distance along the perpendicular of the given point from its foot (positive on one side and negative on the other). Another coordinate system measures the distance from the point to the
horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
through the origin centered around (0, + \infty ) and the length along this horocycle. Other coordinate systems use the Klein model or the Poincare disk model described below, and take the Euclidean coordinates as hyperbolic.


Distance

A Cartesian-like coordinate system (''x, y'') on the oriented hyperbolic plane is constructed as follows. Choose a line in the hyperbolic plane together with an orientation and an origin ''o'' on this line. Then: *the ''x''-coordinate of a point is the signed distance of its projection onto the line (the foot of the perpendicular segment to the line from that point) to the origin; *the ''y''-coordinate is the signed
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
from the point to the line, with the sign according to whether the point is on the positive or negative side of the oriented line. The distance between two points represented by (''x_i, y_i''), ''i=1,2'' in this coordinate system is \operatorname (\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle) = \operatorname \left( \cosh y_1 \cosh (x_2 - x_1) \cosh y_2 - \sinh y_1 \sinh y_2 \right) \,. This formula can be derived from the formulas about
hyperbolic triangle In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called ''sides'' or ''edges'' and three points called ''angles'' or ''vertices''. Just as in the Euclidean case, three poi ...
s. The corresponding metric tensor field is: (\mathrm s)^2 = \cosh^2 y \, (\mathrm x)^2 + (\mathrm y)^2 . In this coordinate system, straight lines take one of these forms ((''x'', ''y'') is a point on the line; ''x''0, ''y''0, ''A'', and ''α'' are parameters): ultraparallel to the ''x''-axis : \tanh (y) = \tanh (y_0) \cosh (x - x_0) asymptotically parallel on the negative side : \tanh (y) = A \exp (x) asymptotically parallel on the positive side : \tanh (y) = A \exp (- x) intersecting perpendicularly : x = x_0 intersecting at an angle ''α'' : \tanh (y) = \tan (\alpha) \sinh (x - x_0) Generally, these equations will only hold in a bounded domain (of ''x'' values). At the edge of that domain, the value of ''y'' blows up to ±infinity. See also Coordinate systems for the hyperbolic plane#Polar coordinate system.


History

Since the publication of
Euclid's Elements The ''Elements'' ( grc, Στοιχεῖα ''Stoikheîa'') is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt 300 BC. It is a collection of definitions, postulat ...
circa 300 BCE, many
geometers A geometer is a mathematician whose area of study is geometry. Some notable geometers and their main fields of work, chronologically listed, are: 1000 BCE to 1 BCE * Baudhayana (fl. c. 800 BC) – Euclidean geometry, geometric algebra ...
made attempts to prove the
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segmen ...
. Some tried to prove it by assuming its negation and trying to derive a contradiction. Foremost among these were Proclus,
Ibn al-Haytham Ḥasan Ibn al-Haytham, Latinized as Alhazen (; full name ; ), was a medieval mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq.For the description of his main fields, see e.g. ("He is one of the pri ...
(Alhacen), Omar Khayyám,
Nasīr al-Dīn al-Tūsī Muhammad ibn Muhammad ibn al-Hasan al-Tūsī ( fa, محمد ابن محمد ابن حسن طوسی 18 February 1201 – 26 June 1274), better known as Nasir al-Din al-Tusi ( fa, نصیر الدین طوسی, links=no; or simply Tusi in the West ...
,
Witelo Vitello ( pl, Witelon; german: Witelo; – 1280/1314) was a friar, theologian, natural philosopher and an important figure in the history of philosophy in Poland. Name Vitello's name varies with some sources. In earlier publications he was quo ...
,
Gersonides Levi ben Gershon (1288 – 20 April 1344), better known by his Graecized name as Gersonides, or by his Latinized name Magister Leo Hebraeus, or in Hebrew by the abbreviation of first letters as ''RaLBaG'', was a medieval French Jewish philosoph ...
,
Alfonso Alphons (Latinized ''Alphonsus'', ''Adelphonsus'', or ''Adefonsus'') is a male given name recorded from the 8th century (Alfonso I of Asturias, r. 739–757) in the Christian successor states of the Visigothic kingdom in the Iberian peninsula. ...
, and later Giovanni Gerolamo Saccheri, John Wallis,
Johann Heinrich Lambert Johann Heinrich Lambert (, ''Jean-Henri Lambert'' in French; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, generally referred to as either Swiss or French, who made important contributions to the subject ...
, and Legendre. Their attempts were doomed to failure (as we now know, the parallel postulate is not provable from the other postulates), but their efforts led to the discovery of hyperbolic geometry. The theorems of Alhacen, Khayyam and al-Tūsī on
quadrilateral In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
s, including the
Ibn al-Haytham–Lambert quadrilateral In geometry, a Lambert quadrilateral (also known as Ibn al-Haytham–Lambert quadrilateral), is a quadrilateral in which three of its angles are right angles. Historically, the fourth angle of a Lambert quadrilateral was of considerable interest s ...
and
Khayyam–Saccheri quadrilateral A Saccheri quadrilateral (also known as a Khayyam–Saccheri quadrilateral) is a quadrilateral with two equal sides perpendicular to the base. It is named after Giovanni Gerolamo Saccheri, who used it extensively in his book ''Euclides ab omni na ...
, were the first theorems on hyperbolic geometry. Their works on hyperbolic geometry had a considerable influence on its development among later European geometers, including Witelo, Gersonides, Alfonso, John Wallis and Saccheri. In the 18th century,
Johann Heinrich Lambert Johann Heinrich Lambert (, ''Jean-Henri Lambert'' in French; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, generally referred to as either Swiss or French, who made important contributions to the subject ...
introduced the
hyperbolic functions In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the un ...
and computed the area of a
hyperbolic triangle In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called ''sides'' or ''edges'' and three points called ''angles'' or ''vertices''. Just as in the Euclidean case, three poi ...
.


19th-century developments

In the 19th century, hyperbolic geometry was explored extensively by
Nikolai Ivanovich Lobachevsky Nikolai Ivanovich Lobachevsky ( rus, Никола́й Ива́нович Лобаче́вский, p=nʲikɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕɛfskʲɪj, a=Ru-Nikolai_Ivanovich_Lobachevsky.ogg; – ) was a Russian mathematician and geometer, kn ...
, János Bolyai,
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
and Franz Taurinus. Unlike their predecessors, who just wanted to eliminate the parallel postulate from the axioms of Euclidean geometry, these authors realized they had discovered a new geometry. Gauss wrote in an 1824 letter to Franz Taurinus that he had constructed it, but Gauss did not publish his work. Gauss called it "
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean g ...
" causing several modern authors to continue to consider "non-Euclidean geometry" and "hyperbolic geometry" to be synonyms. Taurinus published results on hyperbolic trigonometry in 1826, argued that hyperbolic geometry is self consistent, but still believed in the special role of Euclidean geometry. The complete system of hyperbolic geometry was published by Lobachevsky in 1829/1830, while Bolyai discovered it independently and published in 1832. In 1868, Eugenio Beltrami provided models (see below) of hyperbolic geometry, and used this to prove that hyperbolic geometry was consistent
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is b ...
Euclidean geometry was. The term "hyperbolic geometry" was introduced by
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
in 1871. Klein followed an initiative of Arthur Cayley to use the transformations of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
to produce
isometries In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
. The idea used a
conic section In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a spe ...
or
quadric In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension ''D'') in a -dimensional space, and it is de ...
to define a region, and used cross ratio to define a
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
. The projective transformations that leave the conic section or quadric stable are the isometries. "Klein showed that if the Cayley absolute is a real curve then the part of the projective plane in its interior is isometric to the hyperbolic plane..." For more history, see article on
non-Euclidean geometry In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean g ...
, and the references
Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington to ...
and
Milnor John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook Univ ...
.


Philosophical consequences

The discovery of hyperbolic geometry had important
philosophical Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. Some ...
consequences. Before its discovery many philosophers (for example
Hobbes Thomas Hobbes ( ; 5/15 April 1588 – 4/14 December 1679) was an English philosopher, considered to be one of the founders of modern political philosophy. Hobbes is best known for his 1651 book ''Leviathan'', in which he expounds an influe ...
and
Spinoza Baruch (de) Spinoza (born Bento de Espinosa; later as an author and a correspondent ''Benedictus de Spinoza'', anglicized to ''Benedict de Spinoza''; 24 November 1632 – 21 February 1677) was a Dutch philosopher of Portuguese-Jewish origin, ...
) viewed philosophical rigour in terms of the "geometrical method", referring to the method of reasoning used in ''
Euclid's Elements The ''Elements'' ( grc, Στοιχεῖα ''Stoikheîa'') is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt 300 BC. It is a collection of definitions, postulat ...
''.
Kant Immanuel Kant (, , ; 22 April 1724 – 12 February 1804) was a German philosopher and one of the central Enlightenment thinkers. Born in Königsberg, Kant's comprehensive and systematic works in epistemology, metaphysics, ethics, and aest ...
in the ''Critique of Pure Reason'' came to the conclusion that space (in
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
) and time are not discovered by humans as objective features of the world, but are part of an unavoidable systematic framework for organizing our experiences. It is said that
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
did not publish anything about hyperbolic geometry out of fear of the "uproar of the
Boeotians Boeotia ( ), sometimes Latinized as Boiotia or Beotia ( el, Βοιωτία; modern: ; ancient: ), formerly known as Cadmeis, is one of the regional units of Greece. It is part of the region of Central Greece. Its capital is Livadeia, and its la ...
", which would ruin his status as ''princeps mathematicorum'' (Latin, "the Prince of Mathematicians"). The "uproar of the Boeotians" came and went, and gave an impetus to great improvements in mathematical rigour,
analytical philosophy Analytic philosophy is a branch and tradition of philosophy using analysis, popular in the Western world and particularly the Anglosphere, which began around the turn of the 20th century in the contemporary era in the United Kingdom, United Sta ...
and
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premise ...
. Hyperbolic geometry was finally proved consistent and is therefore another valid geometry.


Geometry of the universe (spatial dimensions only)

Because Euclidean, hyperbolic and elliptic geometry are all consistent, the question arises: which is the real geometry of space, and if it is hyperbolic or elliptic, what is its curvature? Lobachevsky had already tried to measure the curvature of the universe by measuring the parallax of
Sirius Sirius is the brightest star in the night sky. Its name is derived from the Greek word , or , meaning 'glowing' or 'scorching'. The star is designated α Canis Majoris, Latinized to Alpha Canis Majoris, and abbreviated Alpha CM ...
and treating Sirius as the ideal point of an
angle of parallelism In hyperbolic geometry, the angle of parallelism \Pi(a) , is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length ''a'' between the right angle an ...
. He realised that his measurements were not precise enough to give a definite answer, but he did reach the conclusion that if the geometry of the universe is hyperbolic, then the absolute length is at least one million times the diameter of the earth's orbit (, 10
parsec The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
). Some argue that his measurements were methodologically flawed. Henri Poincaré, with his sphere-world
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anc ...
, came to the conclusion that everyday experience does not necessarily rule out other geometries. The
geometrization conjecture In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimens ...
gives a complete list of eight possibilities for the fundamental geometry of our space. The problem in determining which one applies is that, to reach a definitive answer, we need to be able to look at extremely large shapes – much larger than anything on Earth or perhaps even in our galaxy.


Geometry of the universe (special relativity)

Special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
places space and time on equal footing, so that one considers the geometry of a unified
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
instead of considering space and time separately. Minkowski geometry replaces
Galilean geometry In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotati ...
(which is the three-dimensional Euclidean space with time of
Galilean relativity Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his '' Dialogue Concerning the Two Chief World Systems'' using t ...
). In relativity, rather than considering Euclidean, elliptic and hyperbolic geometries, the appropriate geometries to consider are
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
,
de Sitter space In mathematical physics, ''n''-dimensional de Sitter space (often abbreviated to dS''n'') is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an ''n''-sphere (with its canoni ...
and
anti-de Sitter space In mathematics and physics, ''n''-dimensional anti-de Sitter space (AdS''n'') is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872� ...
, corresponding to zero, positive and negative curvature respectively. Hyperbolic geometry enters special relativity through rapidity, which stands in for
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
, and is expressed by a
hyperbolic angle In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of ''xy'' = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic function ...
. The study of this velocity geometry has been called kinematic geometry. The space of relativistic velocities has a three-dimensional hyperbolic geometry, where the distance function is determined from the relative velocities of "nearby" points (velocities).


Physical realizations of the hyperbolic plane

The hyperbolic plane is a plane where every point is a saddle point. There exist various
pseudosphere In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having curvature in each point. Its name comes from the analogy with the sphere of radius , which is a surface ...
s in Euclidean space that have a finite area of constant negative Gaussian curvature. By Hilbert's theorem, it is not possible to isometrically immerse a complete hyperbolic plane (a complete regular surface of constant negative Gaussian curvature) in a three-dimensional Euclidean space. Other useful models of hyperbolic geometry exist in Euclidean space, in which the metric is not preserved. A particularly well-known paper model based on the
pseudosphere In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having curvature in each point. Its name comes from the analogy with the sphere of radius , which is a surface ...
is due to
William Thurston William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds. Thursto ...
. The art of crochet has been used (see ) to demonstrate hyperbolic planes, the first such demonstration having been made by
Daina Taimiņa Daina Taimiņa (born August 19, 1954) is a Latvian mathematician, retired adjunct associate professor of mathematics at Cornell University, known for discovering a groundbreaking way of modelling hyperbolic planes by crocheting objects to illustr ...
. In 2000, Keith Henderson demonstrated a quick-to-make paper model dubbed the " hyperbolic soccerball" (more precisely, a truncated order-7 triangular tiling). Instructions on how to make a hyperbolic quilt, designed by
Helaman Ferguson Helaman Rolfe Pratt Ferguson (born 1940 in Salt Lake City, Utah) is an American sculptor and a digital artist, specifically an algorist. He is also well known for his development of the PSLQ algorithm, an integer relation detection algorithm. E ...
, have been made available by Jeff Weeks.


Models of the hyperbolic plane

Various
pseudosphere In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having curvature in each point. Its name comes from the analogy with the sphere of radius , which is a surface ...
s – surfaces with constant negative Gaussian curvature – can be embedded in 3-dimensional space under the standard Euclidean metric, and so can be made into tangible physical models. Of these, the tractoid (often called the pseudosphere) is the best known; using the tractoid as a model of the hyperbolic plane is analogous to using a
cone A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines con ...
or
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infin ...
as a model of the Euclidean plane. However, the entire hyperbolic plane cannot be embedded into Euclidean space in this way, and various other models are more convenient for abstractly exploring hyperbolic geometry. There are four
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
s commonly used for hyperbolic geometry: the
Klein model Klein may refer to: People * Klein (surname) *Klein (musician) Places * Klein (crater), a lunar feature * Klein, Montana, United States *Klein, Texas, United States *Klein (Ohm), a river of Hesse, Germany, tributary of the Ohm *Klein River, a ri ...
, the Poincaré disk model, the Poincaré half-plane model, and the Lorentz or
hyperboloid model In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of ''n''-dimensional hyperbolic geometry in which points are represented by points on the forward sheet ''S''+ of a two-sheeted hyperbolo ...
. These models define a hyperbolic plane which satisfies the axioms of a hyperbolic geometry. Despite their names, the first three mentioned above were introduced as models of hyperbolic space by Beltrami, not by Poincaré or Klein. All these models are extendable to more dimensions.


The Beltrami–Klein model

The
Beltrami–Klein model In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or ''n'' ...
, also known as the projective disk model, Klein disk model and
Klein model Klein may refer to: People * Klein (surname) *Klein (musician) Places * Klein (crater), a lunar feature * Klein, Montana, United States *Klein, Texas, United States *Klein (Ohm), a river of Hesse, Germany, tributary of the Ohm *Klein River, a ri ...
, is named after Eugenio Beltrami and
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
. For the two dimensions this model uses the interior of the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
for the complete hyperbolic
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
, and the
chords Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ( ...
of this circle are the hyperbolic lines. For higher dimensions this model uses the interior of the
unit ball Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (a ...
, and the
chords Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ( ...
of this ''n''-ball are the hyperbolic lines. * This model has the advantage that lines are straight, but the disadvantage that
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
s are distorted (the mapping is not conformal), and also circles are not represented as circles. * The distance in this model is half the logarithm of the
cross-ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, th ...
, which was introduced by Arthur Cayley in
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
.


The Poincaré disk model

The Poincaré disk model, also known as the conformal disk model, also employs the interior of the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
, but lines are represented by arcs of circles that are orthogonal to the boundary circle, plus diameters of the boundary circle. * This model preserves angles, and is thereby conformal. All isometries within this model are therefore Möbius transformations. * Circles entirely within the disk remain circles although the Euclidean center of the circle is closer to the center of the disk than is the hyperbolic center of the circle. *
Horocycle In hyperbolic geometry, a horocycle (), sometimes called an oricycle, oricircle, or limit circle, is a curve whose normal or perpendicular geodesics all converge asymptotically in the same direction. It is the two-dimensional case of a horospher ...
s are circles within the disk which are
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
to the boundary circle, minus the point of contact. * Hypercycles are open-ended chords and circular arcs within the disc that terminate on the boundary circle at non-orthogonal angles.


The Poincaré half-plane model

The Poincaré half-plane model takes one-half of the Euclidean plane, bounded by a line ''B'' of the plane, to be a model of the hyperbolic plane. The line ''B'' is not included in the model. The Euclidean plane may be taken to be a plane with the Cartesian coordinate system and the
x-axis A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
is taken as line ''B'' and the half plane is the upper half (''y'' > 0 ) of this plane. * Hyperbolic lines are then either half-circles orthogonal to ''B'' or rays perpendicular to ''B''. * The length of an interval on a ray is given by
logarithmic measure In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those real numbers that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used f ...
so it is invariant under a
homothetic transformation In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point ''S'' called its ''center'' and a nonzero number ''k'' called its ''ratio'', which sends point X to a point X' by t ...
(x, y) \mapsto (\lambda x, \lambda y),\quad \lambda > 0 . * Like the Poincaré disk model, this model preserves angles, and is thus conformal. All isometries within this model are therefore Möbius transformations of the plane. * The half-plane model is the limit of the Poincaré disk model whose boundary is tangent to ''B'' at the same point while the radius of the disk model goes to infinity.


The hyperboloid model

The
hyperboloid model In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of ''n''-dimensional hyperbolic geometry in which points are represented by points on the forward sheet ''S''+ of a two-sheeted hyperbolo ...
or Lorentz model employs a 2-dimensional hyperboloid of revolution (of two sheets, but using one) embedded in 3-dimensional
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
. This model is generally credited to Poincaré, but Reynolds says that
Wilhelm Killing Wilhelm Karl Joseph Killing (10 May 1847 – 11 February 1923) was a German mathematician who made important contributions to the theories of Lie algebras, Lie groups, and non-Euclidean geometry. Life Killing studied at the University of Mü ...
used this model in 1885 * This model has direct application to
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
, as Minkowski 3-space is a model for
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
, suppressing one spatial dimension. One can take the hyperboloid to represent the events (positions in spacetime) that various inertially moving observers, starting from a common event, will reach in a fixed
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval ...
. * The hyperbolic distance between two points on the hyperboloid can then be identified with the relative rapidity between the two corresponding observers. * The model generalizes directly to an additional dimension: a hyperbolic 3-space three-dimensional hyperbolic geometry relates to Minkowski 4-space.


The hemisphere model

The hemisphere model is not often used as model by itself, but it functions as a useful tool for visualising transformations between the other models. The hemisphere model uses the upper half of the
unit sphere In mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ...
: x^2 + y^2 +z^2 = 1 , z > 0. The hyperbolic lines are half-circles orthogonal to the boundary of the hemisphere. The hemisphere model is part of a
Riemann sphere In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers ...
, and different projections give different models of the hyperbolic plane: * Stereographic projection from (0,0, -1) onto the plane z = 0 projects corresponding points on the Poincaré disk model * Stereographic projection from (0,0, -1) onto the surface x^2 + y^2 - z^2 = -1 , z > 0 projects corresponding points on the
hyperboloid model In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of ''n''-dimensional hyperbolic geometry in which points are represented by points on the forward sheet ''S''+ of a two-sheeted hyperbolo ...
* Stereographic projection from (-1,0,0) onto the plane x=1 projects corresponding points on the Poincaré half-plane model * Orthographic projection onto a plane z = C projects corresponding points on the
Beltrami–Klein model In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or ''n'' ...
. * Central projection from the centre of the sphere onto the plane z = 1 projects corresponding points on the Gans Model See further: Connection between the models (below)


The Gans model

In 1966 David Gans proposed a flattened hyperboloid model in the journal '' American Mathematical Monthly''. It is an orthographic projection of the hyperboloid model onto the xy-plane. This model is not as widely used as other models but nevertheless is quite useful in the understanding of hyperbolic geometry. * Unlike the Klein or the Poincaré models, this model utilizes the entire Euclidean plane. * The lines in this model are represented as branches of a
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, ca ...
.


The band model

The band model employs a portion of the Euclidean plane between two parallel lines. Distance is preserved along one line through the middle of the band. Assuming the band is given by \, the metric is given by , dz, \sec (\operatorname z).


Connection between the models

All models essentially describe the same structure. The difference between them is that they represent different coordinate charts laid down on the same
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general set ...
, namely the hyperbolic plane. The characteristic feature of the hyperbolic plane itself is that it has a constant negative Gaussian curvature, which is indifferent to the coordinate chart used. The geodesics are similarly invariant: that is, geodesics map to geodesics under coordinate transformation. Hyperbolic geometry generally is introduced in terms of the geodesics and their intersections on the hyperbolic plane. Once we choose a coordinate chart (one of the "models"), we can always embed it in a Euclidean space of same dimension, but the embedding is clearly not isometric (since the curvature of Euclidean space is 0). The hyperbolic space can be represented by infinitely many different charts; but the embeddings in Euclidean space due to these four specific charts show some interesting characteristics. Since the four models describe the same metric space, each can be transformed into the other. See, for example: * the Beltrami–Klein model's relation to the hyperboloid model, * the Beltrami–Klein model's relation to the Poincaré disk model, * and the Poincaré disk model's relation to the hyperboloid model.


Isometries of the hyperbolic plane

Every
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
(
transformation Transformation may refer to: Science and mathematics In biology and medicine * Metamorphosis, the biological process of changing physical form after birth or hatching * Malignant transformation, the process of cells becoming cancerous * Tran ...
or
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and m ...
) of the hyperbolic plane to itself can be realized as the composition of at most three reflections. In ''n''-dimensional hyperbolic space, up to ''n''+1 reflections might be required. (These are also true for Euclidean and spherical geometries, but the classification below is different.) All the isometries of the hyperbolic plane can be classified into these classes: * Orientation preserving ** the identity isometry — nothing moves; zero reflections; zero degrees of freedom. ** inversion through a point (half turn) — two reflections through mutually perpendicular lines passing through the given point, i.e. a rotation of 180 degrees around the point; two degrees of freedom. ** rotation around a normal point — two reflections through lines passing through the given point (includes inversion as a special case); points move on circles around the center; three degrees of freedom. ** "rotation" around an
ideal point In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line ''l'' and a point ''P'' not on ''l'', right- and left- limiting parallels to ''l'' through ''P' ...
(horolation) — two reflections through lines leading to the ideal point; points move along horocycles centered on the ideal point; two degrees of freedom. ** translation along a straight line — two reflections through lines perpendicular to the given line; points off the given line move along hypercycles; three degrees of freedom. * Orientation reversing ** reflection through a line — one reflection; two degrees of freedom. ** combined reflection through a line and translation along the same line — the reflection and translation commute; three reflections required; three degrees of freedom.


Hyperbolic geometry in art

M. C. Escher's famous prints '' Circle Limit III'' and ''Circle Limit IV'' illustrate the conformal disc model ( Poincaré disk model) quite well. The white lines in ''III'' are not quite geodesics (they are hypercycles), but are close to them. It is also possible to see quite plainly the negative curvature of the hyperbolic plane, through its effect on the sum of angles in triangles and squares. For example, in ''Circle Limit III'' every vertex belongs to three triangles and three squares. In the Euclidean plane, their angles would sum to 450°; i.e., a circle and a quarter. From this, we see that the sum of angles of a triangle in the hyperbolic plane must be smaller than 180°. Another visible property is
exponential growth Exponential growth is a process that increases quantity over time. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a ...
. In ''Circle Limit III'', for example, one can see that the number of fishes within a distance of ''n'' from the center rises exponentially. The fishes have an equal hyperbolic area, so the area of a ball of radius ''n'' must rise exponentially in ''n''. The art of crochet has been used to demonstrate hyperbolic planes (pictured above) with the first being made by
Daina Taimiņa Daina Taimiņa (born August 19, 1954) is a Latvian mathematician, retired adjunct associate professor of mathematics at Cornell University, known for discovering a groundbreaking way of modelling hyperbolic planes by crocheting objects to illustr ...
, whose book ''
Crocheting Adventures with Hyperbolic Planes ''Crocheting Adventures with Hyperbolic Planes'' is a book on crochet and hyperbolic geometry by Daina Taimiņa. It was published in 2009 by A K Peters, with a 2018 second edition by CRC Press. Topics The book is on the use of crochet to make ...
'' won the 2009 Bookseller/Diagram Prize for Oddest Title of the Year.
HyperRogue ''HyperRogue'' is an independent video game developed by Zeno Rogue. It is a roguelike inspired by the puzzle game ''Deadly Rooms of Death'' and the art of M. C. Escher, taking place in the hyperbolic plane. Gameplay ''HyperRogue'' is a t ...
is a
roguelike Roguelike (or rogue-like) is a subgenre of role-playing computer games traditionally characterized by a dungeon crawl through procedurally generated levels, turn-based gameplay, grid-based movement, and permanent death of the player charac ...
game set on various tilings of the hyperbolic plane.


Higher dimensions

Hyperbolic geometry is not limited to 2 dimensions; a hyperbolic geometry exists for every higher number of dimensions.


Homogeneous structure

Hyperbolic space In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. The ...
of dimension ''n'' is a special case of a Riemannian
symmetric space In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, ...
of noncompact type, as it is isomorphic to the quotient :: \mathrm(1,n)/(\mathrm(1) \times \mathrm(n)). The orthogonal group
acts The Acts of the Apostles ( grc-koi, Πράξεις Ἀποστόλων, ''Práxeis Apostólōn''; la, Actūs Apostolōrum) is the fifth book of the New Testament; it tells of the founding of the Christian Church and the spread of its message ...
by norm-preserving transformations on
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
R1,''n'', and it acts transitively on the two-sheet hyperboloid of norm 1 vectors. Timelike lines (i.e., those with positive-norm tangents) through the origin pass through antipodal points in the hyperboloid, so the space of such lines yields a model of hyperbolic ''n''-space. The stabilizer of any particular line is isomorphic to the
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of the orthogonal groups O(''n'') and O(1), where O(''n'') acts on the tangent space of a point in the hyperboloid, and O(1) reflects the line through the origin. Many of the elementary concepts in hyperbolic geometry can be described in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices ...
ic terms: geodesic paths are described by intersections with planes through the origin, dihedral angles between hyperplanes can be described by inner products of normal vectors, and hyperbolic reflection groups can be given explicit matrix realizations. In small dimensions, there are exceptional isomorphisms of Lie groups that yield additional ways to consider symmetries of hyperbolic spaces. For example, in dimension 2, the isomorphisms allow one to interpret the upper half plane model as the quotient and the Poincaré disc model as the quotient . In both cases, the symmetry groups act by fractional linear transformations, since both groups are the orientation-preserving stabilizers in of the respective subspaces of the Riemann sphere. The Cayley transformation not only takes one model of the hyperbolic plane to the other, but realizes the isomorphism of symmetry groups as conjugation in a larger group. In dimension 3, the fractional linear action of on the Riemann sphere is identified with the action on the conformal boundary of hyperbolic 3-space induced by the isomorphism . This allows one to study isometries of hyperbolic 3-space by considering spectral properties of representative complex matrices. For example, parabolic transformations are conjugate to rigid translations in the upper half-space model, and they are exactly those transformations that can be represented by
unipotent In mathematics, a unipotent element ''r'' of a ring ''R'' is one such that ''r'' − 1 is a nilpotent element; in other words, (''r'' − 1)''n'' is zero for some ''n''. In particular, a square matrix ''M'' is a unipoten ...
upper triangular In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal ar ...
matrices.


See also

*
Band model In geometry, the band model is a conformal model of the hyperbolic plane. The band model employs a portion of the Euclidean plane between two parallel lines. Distance is preserved along one line through the middle of the band. Assuming the band is ...
*
Constructions in hyperbolic geometry Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed. The fifth axiom of hyperbolic geometry says that given a line ''L'' and a point ''P'' ...
* Hjelmslev transformation *
Hyperbolic 3-manifold In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It ...
* Hyperbolic manifold *
Hyperbolic set In dynamical systems theory, a subset Λ of a smooth manifold ''M'' is said to have a hyperbolic structure with respect to a smooth map ''f'' if its tangent bundle may be split into two invariant subbundles, one of which is contracting and th ...
*
Hyperbolic tree A hyperbolic tree (often shortened as hypertree) is an information visualization and graph drawing method inspired by hyperbolic geometry. Displaying hierarchical data as a tree suffers from visual clutter as the number of nodes per level can gr ...
*
Kleinian group In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space . The latter, identifiable with , is the quotient group of the 2 by 2 complex matrices of determinant 1 by their ...
*
Lambert quadrilateral In geometry, a Lambert quadrilateral (also known as Ibn al-Haytham–Lambert quadrilateral), is a quadrilateral in which three of its angles are right angles. Historically, the fourth angle of a Lambert quadrilateral was of considerable interest s ...
* Open universe *
Poincaré metric In mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry ...
* Saccheri quadrilateral * Systolic geometry *
Uniform tilings in hyperbolic plane In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive ( transitive on its v ...
*
δ-hyperbolic space In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations (depending quantitatively on a nonnegative real number δ) between points. The definition, introduced by Mikhael Gromov, generalizes the metric properti ...


Notes


References

* A'Campo, Norbert and Papadopoulos, Athanase, (2012) ''Notes on hyperbolic geometry'', in: Strasbourg Master class on Geometry, pp. 1–182, IRMA Lectures in Mathematics and Theoretical Physics, Vol. 18, Zürich: European Mathematical Society (EMS), 461 pages, SBN , DOI 10.4171–105. * Coxeter, H. S. M., (1942) ''Non-Euclidean geometry'', University of Toronto Press, Toronto * * * Lobachevsky, Nikolai I., (2010) ''Pangeometry'', Edited and translated by Athanase Papadopoulos, Heritage of European Mathematics, Vol. 4. Zürich: European Mathematical Society (EMS). xii, 310~p, /hbk * Milnor, John W., (1982)
Hyperbolic geometry: The first 150 years
', Bull. Amer. Math. Soc. (N.S.) Volume 6, Number 1, pp. 9–24. * Reynolds, William F., (1993) ''Hyperbolic Geometry on a Hyperboloid'', American Mathematical Monthly 100:442–455. * * Samuels, David, (March 2006) ''Knit Theory'' Discover Magazine, volume 27, Number 3. * James W. Anderson, ''Hyperbolic Geometry'', Springer 2005, * James W. Cannon, William J. Floyd, Richard Kenyon, and Walter R. Parry (1997)
Hyperbolic Geometry
', MSRI Publications, volume 31.


External links



University of New Mexico * ttps://www.youtube.com/watch?v=B16YjC9OS0k&mode=user&search= "The Hyperbolic Geometry Song"A short music video about the basics of Hyperbolic Geometry available at YouTube. * * *
More on hyperbolic geometry, including movies and equations for conversion between the different models
University of Illinois at Urbana-Champaign
Hyperbolic Voronoi diagrams made easy, Frank Nielsen
* , interactive instructional website.
Hyperbolic Planar Tesselations

Models of the Hyperbolic Plane
{{DEFAULTSORT:Hyperbolic Geometry