HOME

TheInfoList



OR:

Homological mirror symmetry is a
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
conjecture made by
Maxim Kontsevich Maxim Lvovich Kontsevich (russian: Макси́м Льво́вич Конце́вич, ; born 25 August 1964) is a Russian and French mathematician and mathematical physicist. He is a professor at the Institut des Hautes Études Scientifiques an ...
. It seeks a systematic mathematical explanation for a phenomenon called
mirror symmetry In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2D ther ...
first observed by physicists studying string theory.


History

In an address to the 1994 International Congress of Mathematicians in
Zürich , neighboring_municipalities = Adliswil, Dübendorf, Fällanden, Kilchberg, Maur, Oberengstringen, Opfikon, Regensdorf, Rümlang, Schlieren, Stallikon, Uitikon, Urdorf, Wallisellen, Zollikon , twintowns = Kunming, San Francisco Zürich ...
, speculated that mirror symmetry for a pair of
Calabi–Yau manifold In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstri ...
s ''X'' and ''Y'' could be explained as an equivalence of a
triangulated category In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy cat ...
constructed from the algebraic geometry of ''X'' (the
derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ...
of
coherent sheaves In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with refer ...
on ''X'') and another triangulated category constructed from the symplectic geometry of ''Y'' (the derived Fukaya category).
Edward Witten Edward Witten (born August 26, 1951) is an American mathematical and theoretical physicist. He is a Professor Emeritus in the School of Natural Sciences at the Institute for Advanced Study in Princeton. Witten is a researcher in string theory, q ...
originally described the topological twisting of the N=(2,2) supersymmetric field theory into what he called the A and B model topological string theories. These models concern maps from Riemann surfaces into a fixed target—usually a Calabi–Yau manifold. Most of the mathematical predictions of mirror symmetry are embedded in the physical equivalence of the A-model on ''Y'' with the B-model on its mirror ''X''. When the Riemann surfaces have empty boundary, they represent the worldsheets of closed strings. To cover the case of open strings, one must introduce boundary conditions to preserve the supersymmetry. In the A-model, these boundary conditions come in the form of Lagrangian submanifolds of ''Y'' with some additional structure (often called a brane structure). In the B-model, the boundary conditions come in the form of holomorphic (or algebraic) submanifolds of ''X'' with holomorphic (or algebraic) vector bundles on them. These are the objects one uses to build the relevant categories. They are often called A and B branes respectively. Morphisms in the categories are given by the massless spectrum of open strings stretching between two branes. The closed string A and B models only capture the so-called topological sector—a small portion of the full string theory. Similarly, the branes in these models are only topological approximations to the full dynamical objects that are
D-brane In string theory, D-branes, short for ''Dirichlet membrane'', are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Jin Dai, Leigh, and Polch ...
s. Even so, the mathematics resulting from this small piece of string theory has been both deep and difficult. The School of Mathematics at the
Institute for Advanced Study The Institute for Advanced Study (IAS), located in Princeton, New Jersey, in the United States, is an independent center for theoretical research and intellectual inquiry. It has served as the academic home of internationally preeminent schola ...
in Princeton devoted a whole (no pun intended!) year to Homological Mirror Symmetry during the 2016-17 academic year. Among the participants were
Paul Seidel Paul Seidel (born December 30, 1970) is a Swiss-Italian mathematician. He is a faculty member at the Massachusetts Institute of Technology. Career Seidel attended Heidelberg University, where he received his Diplom under supervision of Albrecht ...
from
MIT The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of the m ...
,
Maxim Kontsevich Maxim Lvovich Kontsevich (russian: Макси́м Льво́вич Конце́вич, ; born 25 August 1964) is a Russian and French mathematician and mathematical physicist. He is a professor at the Institut des Hautes Études Scientifiques an ...
from IHÉS, and Denis Auroux, from
UC Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant uni ...
.


Examples

Only in a few examples have mathematicians been able to verify the conjecture. In his seminal address, Kontsevich commented that the conjecture could be proved in the case of
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
s using
theta function In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field ...
s. Following this route, Alexander Polishchuk and Eric Zaslow provided a proof of a version of the conjecture for elliptic curves. Kenji Fukaya was able to establish elements of the conjecture for
abelian varieties In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group law th ...
. Later, Kontsevich and
Yan Soibelman Iakov (Yan) Soibelman (Russian: Яков Семенович Сойбельман) born 15 April 1956 (Kiev, USSR) is a Russians, Russian American mathematician, professor at Kansas State University (Manhattan, USA), member of thKyiv Mathematical ...
provided a proof of the majority of the conjecture for nonsingular torus bundles over affine manifolds using ideas from the
SYZ conjecture The SYZ conjecture is an attempt to understand the mirror symmetry conjecture, an issue in theoretical physics and mathematics. The original conjecture was proposed in a paper by Strominger, Yau, and Zaslow, entitled "Mirror Symmetry is ''T''- ...
. In 2003, Paul Seidel proved the conjecture in the case of the quartic surface. In 2002 explained SYZ conjecture in the context of Hitchin system and Langlands duality.


Hodge diamond

The dimensions ''h''''p'',''q'' of spaces of harmonic (''p'',''q'')-differential forms (equivalently, the cohomology, i.e., closed forms modulo exact forms) are conventionally arranged in a diamond shape called the ''Hodge Diamond''. These (p,q)-Betti numbers can be computed for complete intersections using a generating function described by
Friedrich Hirzebruch Friedrich Ernst Peter Hirzebruch ForMemRS (17 October 1927 – 27 May 2012) was a German mathematician, working in the fields of topology, complex manifolds and algebraic geometry, and a leading figure in his generation. He has been described as ...
. For a three-dimensional manifold, for example, the Hodge diamond has ''p'' and ''q'' ranging from 0 to 3: Mirror symmetry translates the dimension number of the (p, q)-th differential form ''h''''p'',''q'' for the original manifold into ''h''''n-p'',''q'' of that for the counter pair manifold. Namely, for any Calabi–Yau manifold the Hodge diamond is unchanged by a rotation by π radians and the Hodge diamonds of mirror Calabi–Yau manifolds are related by a rotation by π/2 radians. In the case of an
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
, which is viewed as a 1-dimensional Calabi–Yau manifold, the Hodge diamond is especially simple: it is the following figure. In the case of a
K3 surface In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected al ...
, which is viewed as 2-dimensional Calabi–Yau manifold, since the
Betti number In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplici ...
s are , their Hodge diamond is the following figure. In the 3-dimensional case, usually called the
Calabi–Yau manifold In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstri ...
, a very interesting thing happens. There are sometimes mirror pairs, say ''M'' and ''W'', that have symmetric Hodge diamonds with respect to each other along a diagonal line. ''Ms diamond: ''Ws diamond: ''M'' and ''W'' correspond to A- and B-model in string theory. Mirror symmetry not only replaces the homological dimensions but also the
symplectic structure Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Ha ...
and complex structure on the mirror pairs. That is the origin of homological mirror symmetry. In 1990-1991, had a major impact not only on enumerative algebraic geometry but on the whole mathematics and motivated . The mirror pair of two
quintic threefold In mathematics, a quintic threefold is a 3-dimensional hypersurface of degree 5 in 4-dimensional projective space \mathbb^4. Non-singular quintic threefolds are Calabi–Yau manifolds. The Hodge diamond of a non-singular quintic 3-fold is Mathem ...
s in this paper have the following Hodge diamonds.


See also

*
Mirror symmetry conjecture In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold (encoded as Gromo ...
- more mathematically based article *
Topological quantum field theory In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathe ...
* Category theory *
Floer homology In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer in ...
* Fukaya category *
Derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ...
*
Quintic threefold In mathematics, a quintic threefold is a 3-dimensional hypersurface of degree 5 in 4-dimensional projective space \mathbb^4. Non-singular quintic threefolds are Calabi–Yau manifolds. The Hodge diamond of a non-singular quintic 3-fold is Mathem ...


References

* * * * *{{cite journal , last1=Hausel , first1=Tamas , last2=Thaddeus , first2=Michael , title=Mirror symmetry, Langlands duality, and the Hitchin system , date=2002 , arxiv=math.DG/0205236 , doi=10.1007/s00222-003-0286-7 , volume=153 , issue=1 , journal=Inventiones Mathematicae , pages=197–229, bibcode=2003InMat.153..197H , s2cid=11948225 Differential geometry Conjectures Symmetry Duality theories String theory