HOME

TheInfoList



OR:

Heterospory is the production of
spores In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, ...
of two different sizes and sexes by the
sporophytes A sporophyte () is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase. Life cycle The sporophyte develops from the zygote pr ...
of
land plants The Embryophyta (), or land plants, are the most familiar group of green plants that comprise vegetation on Earth. Embryophytes () have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of green algae as sist ...
. The smaller of these, the
microspore Microspores are land plant spores that develop into male gametophytes, whereas megaspores develop into female gametophytes. The male gametophyte gives rise to sperm cells, which are used for fertilization of an egg cell to form a zygote. Megaspor ...
, is male and the larger
megaspore Megaspores, also called macrospores, are a type of spore that is present in heterosporous plants. These plants have two spore types, megaspores and microspores. Generally speaking, the megaspore, or large spore, germinates into a female gametophy ...
is female. Heterospory evolved during the
Devonian The Devonian ( ) is a geologic period and system of the Paleozoic era, spanning 60.3 million years from the end of the Silurian, million years ago (Mya), to the beginning of the Carboniferous, Mya. It is named after Devon, England, whe ...
period from
isospory In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, ...
independently in several plant groups: the
clubmosses Lycopodiopsida is a class of vascular plants known as lycopods, lycophytes or other terms including the component lyco-. Members of the class are also called clubmosses, firmosses, spikemosses and quillworts. They have dichotomously branching s ...
, the
ferns A fern (Polypodiopsida or Polypodiophyta ) is a member of a group of vascular plants (plants with xylem and phloem) that reproduce via spores and have neither seeds nor flowers. The polypodiophytes include all living pteridophytes except th ...
including the arborescent horsetails, and progymnosperms. This occurred as part of the process of
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
of the timing of
sex differentiation Sexual differentiation is the process of development of the sex differences between males and females from an undifferentiated zygote. Sex determination is often distinct from sex differentiation; sex determination is the designation for the deve ...
.Sussex, I.M. (1966) The origin and development of heterospory in vascular plants. Chapter 9 in ''Trends in Plant morphogenesis'', ed. by E.G. Cutter, Longmans.


Origin of heterospory

Heterospory evolved due to natural selection that favoured an increase in propagule size compared with the smaller spores of homosporous plants. Heterosporous plants, similar to anisosporic plants, produce two different sized spores in separate sporangia that develop into separate male and female gametophytes. It is proposed that the emergence of heterosporous plants started with the separation of sporangia, which allowed for the development of two different spore types; numerous small spores that are easily dispersed, and fewer, larger spores that contain adequate resources to support the developing seedling. During the Devonian period there were many species that utilized vertical growth to capture more sunlight. Heterospory and separate sporangia probably evolved in response to competition for light. Disruptive selection within species resulted in there being two separate sexes of gamete or even the whole plant. This may first have led to an increase in spore size and ultimately resulted in the species producing larger megaspores as well as smaller microspores. Heterospory is advantageous in that having two different types of spores increases the likeliness that plants would successfully produce offspring. Heterosporous spores can respond independently to selection by ecological conditions in order to strengthen male and female reproductive function. Heterospory evolved from homospory many times, but the species in which it first appeared are now extinct. Heterospory is thought to have emerged in the Devonian era, mostly in wet/damp places based on fossil record evidence. In addition to being an outcome of competition for light, it is thought that heterospory was more successful in wetter areas because the megaspore could move more easily around in an aquatic environment while microspores were more easily dispersed by wind. Differing sized spores have been observed in many fossilized plant species. For example, the species ''Lepidophloios'', also known as the scale tree, has been shown in fossils to have been heterosporous; The scale tree had separate cones containing either male or female spores on the same plant. Modern heterosporous plants such as many ferns exhibit endospory, in which a megagametophyte is fertilized by a microgametophyte all while still inside the spore wall, gaining nutrients from the inside of spore. Both heterospory and endospory seem to be one of the many precursors to seed plants and the ovary. Heterosporic plants that produce seeds are their most successful and widespread descendants. Seed plants constitute the largest subsection of heterosporic plants.


Microspores and megaspores

Microspores are
haploid Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respecti ...
spores that in endosporic species contain the male gametophyte, which is carried to the megaspores by wind, water currents or animal vectors. Microspores are not flagellated, and are therefore not capable of active movement. The morphology of the microspore consists of an outer double walled structures surrounding the dense cytoplasm and central nucleus. Megaspores contain the female gametophytes in heterosporic plant species. They develop archegonia that produce egg cells that are fertilized by sperm of the male gametophyte originating from the microspore. This results in the formation of a fertilized diploid
zygote A zygote (, ) is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual organism. In multicellula ...
, that develops into the sporophyte embryo. While heterosporous plants produce fewer megaspores, they are significantly larger than their male counterparts. In exosporic species, the smaller spores germinate into free-living male
gametophytes A gametophyte () is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sex ...
and the larger spores germinate into free-living
female Female (symbol: ♀) is the sex of an organism that produces the large non-motile ova (egg cells), the type of gamete (sex cell) that fuses with the male gamete during sexual reproduction. A female has larger gametes than a male. Females an ...
gametophytes. In endosporic species, the gametophytes of both sexes are very highly reduced and contained within the spore wall. The microspores of both exosporic and endosporic species are free-sporing, distributed by wind, water or animal vectors, but in endosporic species the megaspores and the megagametophyte contained within are retained and nurtured by the sporophyte phase. Endosporic species are thus usually
dioecious Dioecy (; ; adj. dioecious , ) is a characteristic of a species, meaning that it has distinct individual organisms (unisexual) that produce male or female gametes, either directly (in animals) or indirectly (in seed plants). Dioecious reproductio ...
, a condition that promotes
outcrossing Out-crossing or out-breeding is the technique of crossing between different breeds. This is the practice of introducing distantly related genetic material into a breeding line, thereby increasing genetic diversity. Outcrossing can be a useful ...
. Some exosporic species produce micro- and megaspores in the same
sporangium A sporangium (; from Late Latin, ) is an enclosure in which spores are formed. It can be composed of a single cell or can be multicellular. Virtually all plants, fungi, and many other lineages form sporangia at some point in their life ...
, a condition known as homoangy, while in others the micro- and megaspores are produced in separate sporangia (heterangy). These may both be borne on the same
monoecious Monoecy (; adj. monoecious ) is a sexual system in seed plants where separate male and female cones or flowers are present on the same plant. It is a monomorphic sexual system alongside gynomonoecy, andromonoecy and trimonoecy. Monoecy is conne ...
sporophyte or on different sporophytes in dioicous species.


Reproduction

Heterospory was a key event in the evolution of both fossil and surviving plants. The retention of megaspores and the dispersal of microspores allow for both dispersal and establishment reproductive strategies. This adaptive ability of heterospory increases reproductive success as any type of environment favors having these two strategies. Heterospory stops self-fertilization from occurring in a gametophyte, but does not stop two gametophytes that originated from the same sporophyte from mating. This specific type of self-fertilization is termed as sporophytic selfing, and in extant plants it occurs most commonly among
angiosperms Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (), commonly called angiosperms. The term "angiosperm" is derived from the Greek words ('container, vessel') and ('seed'), and refers to those plants th ...
. While heterospory stops extreme inbreeding from occurring, it does not prevent inbreeding altogether as sporophytic selfing can still occur. A complete model for the origin of heterospory, known as the Haig-Westoby model, establishes a connection between minimum spore size and successful reproduction of bisexual gametophytes. For the female function, as minimum spore size increases so does the chance for successful reproduction. For the male function, reproductive success does not change as the minimum spore size increases.


References

{{Reflist Plant reproduction