HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a great circle or orthodrome is the
circular Circular may refer to: * The shape of a circle * ''Circular'' (album), a 2006 album by Spanish singer Vega * Circular letter (disambiguation) ** Flyer (pamphlet) A flyer (or flier) is a form of paper advertisement intended for wide distrib ...
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of a
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ...
and a plane passing through the sphere's center point. Any arc of a great circle is a
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection ...
of the sphere, so that great circles in
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry is the geometry of the two-dimensional surface of a sphere. In this context the word "sphere" refers only to the 2-dimensional surface and other terms like "ball" or "solid sp ...
are the natural analog of straight lines in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
. For any pair of distinct non- antipodal points on the sphere, there is a unique great circle passing through both. (Every great circle through any point also passes through its antipodal point, so there are infinitely many great circles through two antipodal points.) The shorter of the two great-circle arcs between two distinct points on the sphere is called the ''minor arc'', and is the shortest surface-path between them. Its
arc length ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * ...
is the
great-circle distance The great-circle distance, orthodromic distance, or spherical distance is the distance along a great circle. It is the shortest distance between two points on the surface of a sphere, measured along the surface of the sphere (as opposed to a ...
between the points (the intrinsic distance on a sphere), and is proportional to the measure of the
central angle A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc l ...
formed by the two points and the center of the sphere. A great circle is the largest circle that can be drawn on any given sphere. Any
diameter In geometry, a diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints lie on the circle. It can also be defined as the longest chord of the circle. Both definitions are also valid ...
of any great circle coincides with a diameter of the sphere, and therefore every great circle is
concentric In geometry, two or more objects are said to be concentric, coaxal, or coaxial when they share the same center or axis. Circles, regular polygons and regular polyhedra, and spheres may be concentric to one another (sharing the same center po ...
with the sphere and shares the same
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
. Any other circle of the sphere is called a ''small circle'', and is the intersection of the sphere with a plane not passing through its center. Small circles are the spherical-geometry analog of circles in Euclidean space. Every circle in Euclidean 3-space is a great circle of exactly one sphere. The disk bounded by a great circle is called a ''great disk'': it is the intersection of a
ball A ball is a round object (usually spherical, but can sometimes be ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used fo ...
and a plane passing through its center. In higher dimensions, the great circles on the ''n''-sphere are the intersection of the ''n''-sphere with 2-planes that pass through the origin in the Euclidean space .


Derivation of shortest paths

To prove that the minor arc of a great circle is the shortest path connecting two points on the surface of a sphere, one can apply
calculus of variations The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
to it. Consider the class of all regular paths from a point p to another point q. Introduce
spherical coordinates In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the ''radial distance'' of that point from a fixed origin, its ''polar angle'' meas ...
so that p coincides with the north pole. Any curve on the sphere that does not intersect either pole, except possibly at the endpoints, can be parametrized by :\theta = \theta(t),\quad \phi = \phi(t),\quad a\le t\le b provided we allow \phi to take on arbitrary real values. The infinitesimal arc length in these coordinates is : ds=r\sqrt\, dt. So the length of a curve \gamma from p to q is a functional of the curve given by : S
gamma Gamma (uppercase , lowercase ; ''gámma'') is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter r ...
r\int_a^b\sqrt\, dt. According to the
Euler–Lagrange equation In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
, S
gamma Gamma (uppercase , lowercase ; ''gámma'') is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter r ...
/math> is minimized if and only if : \frac=C, where C is a t-independent constant, and : \frac=\frac\frac. From the first equation of these two, it can be obtained that : \phi'=\frac. Integrating both sides and considering the boundary condition, the real solution of C is zero. Thus, \phi'=0 and \theta can be any value between 0 and \theta_0, indicating that the curve must lie on a meridian of the sphere. In Cartesian coordinates, this is :x\sin\phi_0 - y\cos\phi_0 = 0 which is a plane through the origin, i.e., the center of the sphere.


Applications

Some examples of great circles on the
celestial sphere In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphe ...
include the celestial horizon, the
celestial equator The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. This plane of reference bases the equatorial coordinate system. In other words, the celestial equator is an abstract project ...
, and the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic again ...
. Great circles are also used as rather accurate approximations of
geodesics In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
on the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
's surface for air or sea
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navigation, ...
(although it is not a perfect sphere), as well as on spheroidal
celestial bodies An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
. The
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can al ...
of the idealized earth is a great circle and any meridian and its opposite meridian form a great circle. Another great circle is the one that divides the land and water hemispheres. A great circle divides the earth into two hemispheres and if a great circle passes through a point it must pass through its
antipodal point In mathematics, antipodal points of a sphere are those diametrically opposite to each other (the specific qualities of such a definition are that a line drawn from the one to the other passes through the center of the sphere so forms a true d ...
. The Funk transform integrates a function along all great circles of the sphere.


See also

*
Small circle A circle of a sphere is a circle that lies on a sphere. Such a circle can be formed as the intersection of a sphere and a plane, or of two spheres. Circles of a sphere are the spherical geometry analogs of generalised circles in Euclidean spac ...
*
Circle of a sphere A circle of a sphere is a circle that lies on a sphere. Such a circle can be formed as the intersection of a sphere and a plane, or of two spheres. Circles of a sphere are the spherical geometry analogs of generalised circles in Euclidean spac ...
*
Great-circle distance The great-circle distance, orthodromic distance, or spherical distance is the distance along a great circle. It is the shortest distance between two points on the surface of a sphere, measured along the surface of the sphere (as opposed to a ...
*
Great-circle navigation Great-circle navigation or orthodromic navigation (related to orthodromic course; from the Greek ''ορθóς'', right angle, and ''δρóμος'', path) is the practice of navigating a vessel (a ship or aircraft) along a great circle. Such ro ...
* Great ellipse *
Rhumb line In navigation, a rhumb line, rhumb (), or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant bearing as measured relative to true north. Introduction The effect of following a rhumb li ...


References


External links


Great Circle – from MathWorld
Great Circle description, figures, and equations. Mathworld, Wolfram Research, Inc. c1999
Great Circles on Mercator's Chart
by John Snyder with additional contributions by Jeff Bryant, Pratik Desai, and Carl Woll,
Wolfram Demonstrations Project The Wolfram Demonstrations Project is an organized, open-source collection of small (or medium-size) interactive programs called Demonstrations, which are meant to visually and interactively represent ideas from a range of fields. It is hos ...
.
Navigational Algorithms
{{Webarchive, url=https://web.archive.org/web/20181016042619/https://sites.google.com/site/navigationalalgorithms/papersnavigation , date=2018-10-16 Paper: The Sailings.
Chart Work - Navigational Algorithms
Chart Work free software: Rhumb line, Great Circle, Composite sailing, Meridional parts. Lines of position Piloting - currents and coastal fix. Elementary geometry Spherical trigonometry Riemannian geometry Circles Spherical curves