glutamate hypothesis of schizophrenia
   HOME

TheInfoList



OR:

The glutamate hypothesis of schizophrenia models the subset of pathologic mechanisms of
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social wit ...
linked to
glutamatergic Glutamatergic means "related to glutamate". A glutamatergic agent (or drug) is a chemical that directly modulates the excitatory amino acid (glutamate/aspartate) system in the body or brain. Examples include excitatory amino acid receptor agonis ...
signaling. The hypothesis was initially based on a set of clinical, neuropathological, and, later, genetic findings pointing at a hypofunction of glutamatergic signaling via NMDA receptors. While thought to be more proximal to the root
causes of schizophrenia Risk factors of schizophrenia include many genetic and environmental phenomena. The prevailing model of schizophrenia is that of a special neurodevelopmental disorder with no precise boundary or single cause (i.e. arises from multiple mechanisms). ...
, it does not negate the dopamine hypothesis, and the two may be ultimately brought together by circuit-based models. The development of the hypothesis allowed for the integration of the GABAergic and oscillatory abnormalities into the converging disease model and made it possible to discover the causes of some disruptions. Like the dopamine hypothesis, the development of the glutamate hypothesis developed from the observed effects of mind-altering drugs. However, where
dopamine agonists A dopamine agonist (DA) is a compound that activates dopamine receptors. There are two families of dopamine receptors, D2-like and D1-like, and they are all G protein-coupled receptors. D1- and D5-receptors belong to the D1-like family and th ...
can mimic positive symptoms with significant risks to brain structures during and after use,
NMDA antagonists NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the ''N''-Methyl-D-aspartate receptor ( NMDAR). They are commonly used as anesthetics for animals and humans; the state of anesthesia they induc ...
mimic some positive and negative symptoms with less brain harm, when combined with a GABAA activating drug. Likely, both dopaminergic and glutaminergic abnormalities are implicated in schizophrenia, from a profound alteration in the function of the chemical synapses, as well as electrical synaptic irregularities. These form a portion of the complex constellation of factors, neurochemically, psychologically, psychosocially, and structurally, which result in schizophrenia.


The role of heteromer formation

Alteration in the expression, distribution, autoregulation, and prevalence of specific glutamate heterodimers alters relative levels of paired G proteins to the heterodimer-forming glutamate receptor in question. Namely: 5HT2A and mGlu2 form a dimer which mediates psychotomimetic and entheogenic effects of psychedelics; as such this receptor is of interest in schizophrenia. Agonists at either constituent receptor may modulate the other receptor allosterically; e.g. glutamate-dependent signaling via mGlu2 may modulate 5HT2A-ergic activity. Equilibrium between mGlu2/5HT2A is altered against tendency towards of psychosis by neuroleptic-pattern 5HT2A antagonists and mGlu2 agonists; both display antipsychotic activity. AMPA, the most widely distributed receptor in the brain, is a tetrameric ionotropic receptor; alterations in equilibrium between constituent subunits are seen in mGlu2/5HT2A antagonist (antipsychotic) administration- GluR2 is seen to be upregulated in the PFC while GluR1 downregulates in response to antipsychotic administration. Reelin abnormalities may also be involved in the pathogenesis of schizophrenia via a glutamate-dependent mechanism. Reelin expression deficits are seen in schizophrenia, and reelin enhances expression of AMPA and NMDA alike. As such deficits in these two ionotropic glutamate receptors may be partially explained by altered reelin cascades. Neuregulin 1 deficits may also be involved in glutaminergic hypofunction as NRG1 hypofunction leads to schizophrenia-pattern behavior in mice; likely due in part to reduced NMDA signaling via Src suppression.


The role of synaptic pruning

Various neurotrophic factors dysregulate in schizophrenia and other mental illnesses, namely BDNF; expression of which is lowered in schizophrenia as well as in major depression and bipolar disorder. BDNF regulates in an AMPA-dependent mechanism - AMPA and BDNF alike are critical mediators of growth cone survival. NGF, another neurotrophin involved in maintenance of synaptic plasticity is similarly seen in deficit. Dopaminergic excess, classically understood to result in schizophrenia, puts oxidative load on neurons; leading to inflammatory response and microglia activation. Similarly, toxoplasmosis infection in the CNS (positively correlated to schizophrenia) activates inflammatory cascades, also leading to microglion activation. The lipoxygenase-5 inhibitor minocycline has been seen to be marginally effective in halting schizophrenia progression. One of such inflammatory cascades' downstream transcriptional target,
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein complex that controls transcription of DNA, cytokine production and cell survival. NF-κB is found in almost all animal cell types and is involved in cellular ...
, is observed to have altered expression in schizophrenia. In addition, CB2 is one of the most widely distributed glial cell-expressed receptors,
downregulation In the biological context of organisms' production of gene products, downregulation is the process by which a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus. The complementary pr ...
of this inhibitory receptor may increase global synaptic pruning activity. While difference in expression or distribution is observed, when the CB2 receptor is knocked out in mice, schizophreniform behaviors manifest. This may deregulate synaptic pruning processes in a tachyphlaxis mechanism wherein immediate excess CB2 activity leads to phosphorylation of the receptor via GIRK, resultant in b-arrestin-dependent internalization and subsequent trafficking to the proteasome for degradation.


The role of endogenous antagonists

Alterations in production of endogenous NMDA antagonists such as
agmatine Agmatine, also known as 4-aminobutyl-guanidine, is an aminoguanidine that was discovered in 1910 by Albrecht Kossel. Agmatine is a chemical substance which is naturally created from the amino acid arginine. Agmatine has been shown to exert modula ...
and
kynurenic acid Kynurenic acid (KYNA or KYN) is a product of the normal metabolism of amino acid -tryptophan. It has been shown that kynurenic acid possesses neuroactive activity. It acts as an antiexcitotoxic and anticonvulsant, most likely through acting as an ...
have been shown in schizophrenia. Deficit in NMDA activity produces psychotomimetic effects, though it remains to be seen if the blockade of NMDA via these agents is causative or actually mimetic of patterns resultant from monoaminergic disruption. AMPA, the most widely distributed receptor in the brain, mediates long term potentiation via activity-dependent modulation of AMPA density. GluR1 subunit-containing AMPA receptors are Ca2+ permeable while GluR2/3 subunit-positive receptors are nearly impermeable to calcium ions. In the regulated pathway, GluR1 dimers populate the synapse at a rate proportional to NMDA-ergic Ca2+ influx. In the constitutative pathway, GluR2/3 dimers populate the synapse at a steady state. This forms a positive feedback loop, where a small trigger impulse degating NMDA from Mg2+ pore blockade results in calcium influx, this calcium influx then triggers trafficking of GluR1-containing(Ca2+ permeable) subunits to the PSD, such trafficking of GluR1-positive AMPA to the postsynaptic neuron allows for upmodulation of the postsynaptic neuron's calcium influx in response to presynaptic calcium influx. Robust negative feedback at NMDA from
kynurenic acid Kynurenic acid (KYNA or KYN) is a product of the normal metabolism of amino acid -tryptophan. It has been shown that kynurenic acid possesses neuroactive activity. It acts as an antiexcitotoxic and anticonvulsant, most likely through acting as an ...
, magnesium, zinc, and
agmatine Agmatine, also known as 4-aminobutyl-guanidine, is an aminoguanidine that was discovered in 1910 by Albrecht Kossel. Agmatine is a chemical substance which is naturally created from the amino acid arginine. Agmatine has been shown to exert modula ...
prevents runaway feedback. Misregulation of this pathway would sympathetically dysregulate LTP via disruption of NMDA. Such alteration in LTP may play a role, specifically in negative symptoms of schizophrenia, in creation of more broad disruptions such as loss of brain volume; an effect of the disease which antidopaminergics actually worsen, rather than treat.


The role of a7 nicotinic

Anandamide, an endocannabinoid, is an a7 nicotinic antagonist. Cigarettes, consumed far out of proportion by schizophrenics, contain nornitrosonicotine; a potent a7 antagonist. This may indicate a7 pentameter excess as a causative factor, or possibly as a method of self-medication to combat antipsychotic side effects. Cannabidiol, a FAAH inhibitor, increases levels in anandamide and may have antipsychotic effect; though results are mixed here as anandamide also is a cannabinoid and as such displays some psychotomimetic effect. However, a7 nicotinic ''agonists'' have been indicated as potential treatments for schizophrenia, though evidence is somewhat contradictory there is indication a7 nAChR is somehow involved in the pathogenesis of schizophrenia.


The role of 5-HT

This deficit in activation also results in a decrease in activity of 5-HT1A receptors in the raphe nucleus. This serves to increase global serotonin levels, as
5-HT1A The serotonin 1A receptor (or 5-HT1A receptor) is a subtype of serotonin receptor, or 5-HT receptor, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-c ...
serves as an
autoreceptor An autoreceptor is a type of receptor located in the membranes of nerve cells. It serves as part of a negative feedback loop in signal transduction. It is only sensitive to the neurotransmitters or hormones released by the neuron on which the au ...
. The
5-HT1B receptor 5-hydroxytryptamine receptor 1B also known as the 5-HT1B receptor is a protein that in humans is encoded by the ''HTR1B'' gene. The 5-HT1B receptor is a 5-HT receptor subtype. Tissue distribution and function 5-HT1B receptors are widely distrib ...
, also acting as an autoreceptor, specifically within the striatum, but also parts of
basal ganglia The basal ganglia (BG), or basal nuclei, are a group of subcortical nuclei, of varied origin, in the brains of vertebrates. In humans, and some primates, there are some differences, mainly in the division of the globus pallidus into an exter ...
then will inhibit serotonin release. This disinhibits frontal dopamine release. The local deficit of 5-HT within the striatum, basal ganglia, and
prefrontal cortex In mammalian brain anatomy, the prefrontal cortex (PFC) covers the front part of the frontal lobe of the cerebral cortex. The PFC contains the Brodmann areas BA8, BA9, BA10, BA11, BA12, BA13, BA14, BA24, BA25, BA32, BA44, BA45, BA46 ...
causes a deficit of excitatory
5-HT6 The 5HT6 receptor is a subtype of 5HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gs and mediates excitatory neurotransmission. ''HTR6 ...
signalling. This could possibly be the reason antipsychotics sometimes are reported to aggravate negative symptoms as antipsychotics are 5HT6 ''antagonists'' This receptor is primarily GABAergic, as such, it causes an excess of glutamatergic, noradrenergic, dopaminergic, and cholinergic activity within the prefrontal cortex and the striatum. An excess of 5-HT7 signaling within the
thalamus The thalamus (from Greek θάλαμος, "chamber") is a large mass of gray matter located in the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all directions, ...
also creates too much excitatory transmission to the prefrontal cortex. Combined with another critical abnormality observed in those with schizophrenia:
5-HT2A The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations. 5-HT is sh ...
dysfunction, this altered signalling cascade creates cortical, thus cognitive abnormalities.
5-HT2A The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations. 5-HT is sh ...
allows a link between cortical, thus conscious, and the basal ganglia, unconscious. Axons from 5-HT2A neurons in layer V of the
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consistin ...
reach the basal ganglia, forming a feedback loop. Signalling from layer V of the cerebral cortex to the basal ganglia alters
5-HT2C The 5-HT2C receptor is a subtype of 5-HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gq/G11 and mediates excitatory neurotransmission. ...
signalling. This feedback loop with 5-HT2A/
5-HT2C The 5-HT2C receptor is a subtype of 5-HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gq/G11 and mediates excitatory neurotransmission. ...
is how the outer cortex layers can exert some control over our neuropeptides, specifically
opioid peptides Opioid peptides are peptides that bind to opioid receptors in the brain; opiates and opioids mimic the effect of these peptides. Such peptides may be produced by the body itself, for example endorphins. The effects of these peptides vary, but th ...
, oxytocin and
vasopressin Human vasopressin, also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin, is a hormone synthesized from the AVP gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. It then trave ...
. This alteration in this limbic-layer V axis may create the profound change in social cognition (and sometimes cognition as a whole) that is observed in schizophrenia. However, genesis of the actual alterations is a much more complex phenomena.


The role of inhibitory transmission

The
cortico-basal ganglia-thalamo-cortical loop The cortico-basal ganglia-thalamo-cortical loop (CBGTC loop) is a system of neural circuits in the brain. The loop involves connections between the cortex, the basal ganglia, the thalamus, and back to the cortex. It is of particular relevance t ...
is the source of the ordered input necessary for a higher level upper cortical loop. Feedback is controlled by the inhibitory potential of the cortices via the striatum. Through 5-HT2A efferents from layer V of the cortex transmission proceeds through the striatum into the globulus pallidus internal and substantia nigra pars compacta. This core input to the basal ganglia is combined with input from the subthalamic nucleus. The only primarily dopaminergic pathway in this loop is a reciprocal connection from the substantia nigra pars reticulata to the striatum. Dopaminergic drugs such as dopamine releasing agents and direct dopamine receptor agonists create alterations in this primarily GABAergic pathway via increased dopaminergic feedback from the substantia nigra pars compacta to the striatum. However, dopamine also modulates other cortical areas, namely the VTA; with efferents to the amygdala and locus coeruleus, likely modulating anxiety and paranoid aspects of psychotic experience. As such, the glutamate hypothesis is probably not an explanation of primary causative factors in positive psychosis, but rather might possibly be an explanation for negative symptoms.
Dopamine hypothesis of schizophrenia The dopamine hypothesis of schizophrenia or the dopamine hypothesis of psychosis is a model that attributes the positive symptoms of schizophrenia to a disturbed and hyperactive dopaminergic signal transduction. The model draws evidence from the ...
elaborates upon the nature of abnormal lateral structures found in someone with a high risk for psychosis.


Altered signalling cascades

Again, thalamic input from layer V is a crucial factor in the functionality of the human brain. It allows the two sides to receive similar inputs, thus be able to perceive the same world. In psychosis, thalamic input loses much of its integrated character: hyperactive core feedback loops overwhelm the ordered output. This is due to excessive D2 and 5-HT2A activity. This alteration in input to the top and bottom of the cortex. The altered 5-HT signal cascade enhances the strength of excitatory thalamic input from layer V. This abnormality, enhancing the thalamic-cortical transmission cascade versus the corticostriatal control, creates a feedback loop, resulting in abnormally strong basal ganglia output. The root of psychosis (experiences that cannot be explained, even within their own mind) is when basal ganglia input to layer V overwhelms the inhibitory potential of the higher cortexies resulting from striatal transmission. When combined with the excess prefrontal, specifically orbitofrontal transmission, from the hippocampus, this creates a brain prone to falling into self reinforcing belief. However, given a specific environment, a person with this kind of brain (a human) can create a self-reinforcing pattern of maladaptive behavior, from the altered the layer II/III and III/I axises, from the disinhibited thalamic output. Rationality is impaired, primarily as response to the deficit of oxytocin and excess of vasopressin from the abnormal 5HT2C activity. Frontal cortex activity will be impaired, when combined with excess DA activity: the basis for the advancement of schizophrenia, but it is also the neurologic mechanism behind many other psychotic diseases as well.. Heredation of schizophrenia may even be a result of conspecific "refrigerator parenting" techniques passed on though generations. However, the genetic component is the primary source of the neurological abnormalities which leave one prone to psychological disorders. Specifically, there is much overlap between bipolar disorder and schizophrenia, and other psychotic disorders. Psychotic disorder is linked to excessive drug use, specifically
dissociative Dissociatives, colloquially dissos, are a subclass of hallucinogens which distort perception of sight and sound and produce feelings of detachment – dissociation – from the environment and/or self. Although many kinds of drugs are capable of ...
s,
psychedelics Psychedelics are a subclass of hallucinogenic drugs whose primary effect is to trigger non-ordinary states of consciousness (known as psychedelic experiences or "trips").Pollan, Michael (2018). ''How to Change Your Mind: What the New Science of ...
, stimulants, and marijuana.


Treatment

Alterations in serine racemase indicate that the endogenous NMDA ''agonist''
D-serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form ...
may be produced abnormally in schizophrenia and that d-serine may be an effective treatment for schizophrenia. Schizophrenia is now treated by medications known as
antipsychotics Antipsychotics, also known as neuroleptics, are a class of psychotropic medication primarily used to manage psychosis (including delusions, hallucinations, paranoia or disordered thought), principally in schizophrenia but also in a range of ...
(or
neuroleptics Antipsychotics, also known as neuroleptics, are a class of psychotropic medication primarily used to manage psychosis (including delusions, hallucinations, paranoia or disordered thought), principally in schizophrenia but also in a range of oth ...
) that typically reduce dopaminergic activity because too much activity has been most strongly linked to
positive symptoms Signs and symptoms are the observed or detectable signs, and experienced symptoms of an illness, injury, or condition. A sign for example may be a higher or lower temperature than normal, raised or lowered blood pressure or an abnormality showin ...
, specifically persecutory delusions. Dopaminergic drugs do not induce the characteristic auditory hallucinations of schizophrenia. Dopaminergic drug abuse such as abuse of methamphetamine may result in a short lasting psychosis or provocation of a longer psychotic episode that may include symptoms of auditory hallucinations. The
typical antipsychotics Typical antipsychotics (also known as major tranquilizers, and first generation antipsychotics) are a class of antipsychotic drugs first developed in the 1950s and used to treat psychosis (in particular, schizophrenia). Typical antipsychotics ma ...
are known to have significant risks of side effects that can increase over time, and only show clinical effectiveness in reducing positive symptoms. Additionally, although newer
atypical antipsychotics The atypical antipsychotics (AAP), also known as second generation antipsychotics (SGAs) and serotonin–dopamine antagonists (SDAs), are a group of antipsychotic drugs (antipsychotic drugs in general are also known as major tranquilizers and ne ...
can have less affinity for dopamine receptors and still reduce positive symptoms, do not significantly reduce negative symptoms. A 2006 systematic review investigated the efficacy of glutamatergic drugs as add-on:


Psychotomimetic glutamate antagonists

Ketamine Ketamine is a dissociative anesthetic used medically for induction and maintenance of anesthesia. It is also used as a recreational drug. It is one of the safest anesthetics, as, in contrast with opiates, ether, and propofol, it suppresses ...
and PCP were observed to produce significant similarities to schizophrenia. Ketamine produces more similar symptoms (hallucinations, withdrawal) without observed permanent effects (other than ketamine tolerance). Both arylcyclohexamines have some(uM) affinity to D2 and as triple reuptake inhibitors. PCP is representative symptomatically, but does appear to cause brain structure changes seen in schizophrenia. Although unconfirmed,
Dizocilpine Dizocilpine (INN), also known as MK-801, is a pore blocker of the ''N''-Methyl-D-aspartate (NMDA) receptor, a glutamate receptor, discovered by a team at Merck in 1982. Glutamate is the brain's primary excitatory neurotransmitter. The channel is ...
discovered by a team at Merck seems to model both the positive and negative effects in a manner very similar to schizophreniform disorders.


Possible glutamate based treatment

An early clinical trial by
Eli Lilly Eli Lilly (July 8, 1838 – June 6, 1898) was an American soldier, pharmacist, chemist, and businessman who founded the Eli Lilly and Company pharmaceutical corporation. Lilly enlisted in the Union Army during the American Civil War and ...
of the drug LY2140023 has shown potential for treating
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social wit ...
without the weight gain and other side-effects associated with conventional
anti-psychotics Antipsychotics, also known as neuroleptics, are a class of psychotropic medication primarily used to manage psychosis (including delusions, hallucinations, paranoia or disordered thought), principally in schizophrenia but also in a range of oth ...
. A trial in 2009 failed to prove superiority over placebo or
Olanzapine Olanzapine (sold under the trade name Zyprexa among others) is an atypical antipsychotic primarily used to treat schizophrenia and bipolar disorder. For schizophrenia, it can be used for both new-onset disease and long-term maintenance. It is t ...
, but Lilly explained this as being due to an exceptionally high placebo response. However, Eli Lilly terminated further development of the compound in 2012 after it failed in phase III clinical trials. This drug acts as a selective agonist at
metabotropic A metabotropic receptor, also referred to by the broader term G-protein-coupled receptor, is a type of membrane receptor that initiates a number of metabolic steps to modulate cell activity. The nervous system utilizes two types of receptors: met ...
mGluR2 Metabotropic glutamate receptor 2 (mGluR2) is a protein that, in humans, is encoded by the ''GRM2'' gene. mGluR2 is a G protein-coupled receptor (GPCR) that couples with the Gi alpha subunit. The receptor functions as an autoreceptor for glutam ...
and mGluR3 glutamate receptors (the mGluR3 gene has previously been associated with schizophrenia). Studies of
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid ( carbamic acid is unstable), with the chemical formula NH2‐ CH2‐ COOH. Glycine is one of the proteinog ...
(and related co-
agonists An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the agon ...
at the NMDA receptor) added to conventional
anti-psychotics Antipsychotics, also known as neuroleptics, are a class of psychotropic medication primarily used to manage psychosis (including delusions, hallucinations, paranoia or disordered thought), principally in schizophrenia but also in a range of oth ...
have also found some evidence that these may improve symptoms in schizophrenia.


Animal models

Research done on mice in early 2009 has shown that when the
neuregulin-1 Neuregulin 1, or NRG1, is a gene of the epidermal growth factor family that in humans is encoded by the ''NRG1'' gene. NRG1 is one of four proteins in the neuregulin family that act on the EGFR family of receptors. Neuregulin 1 is produced in num ...
\
ErbB The ErbB family of proteins contains four receptor tyrosine kinases, structurally related to the epidermal growth factor receptor (EGFR), its first discovered member. In humans, the family includes Her1 (EGFR, ErbB1), Her2 (Neu, ErbB2), Her3 ( ...
post-synaptic receptor genes are deleted, the
dendritic spines A dendritic spine (or spine) is a small membranous protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical si ...
of glutamate neurons initially grow, but break down during later development. This led to symptoms (such as disturbed social function, inability to adapt to predictable future stressors) that overlap with schizophrenia. This parallels the time delay for symptoms setting in with schizophrenic humans who usually appear to show normal development until early adulthood. Disrupted in schizophrenia 1 is a gene that is disrupted in schizophrenia.


Notes and references


Further reading

* * * * * * * * * *


External links


Glutamate Hypothesis of Schizophrenia
By Bita Moghaddam {{DEFAULTSORT:Glutamate hypothesis of schizophrenia Neuroscience of schizophrenia