HOME

TheInfoList



OR:

A gluon ( ) is an
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions (quarks, leptons, antiq ...
that acts as the exchange particle (or gauge boson) for the strong force between
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s. It is analogous to the exchange of
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
s in the
electromagnetic force In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of ...
between two
charged particle In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, ...
s. Gluons bind quarks together, forming
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s such as
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mas ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beha ...
s. Gluons are
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
gauge bosons that mediate
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the ...
s of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s in quantum chromodynamics (QCD). Gluons themselves carry the
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of col ...
of the strong interaction. This is unlike the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
, which mediates the electromagnetic interaction but lacks an electric charge. Gluons therefore participate in the strong interaction in addition to mediating it, making QCD significantly harder to analyze than
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
(QED).


Properties

The gluon is a
vector boson In particle physics, a vector boson is a boson whose spin equals one. The vector bosons that are regarded as elementary particles in the Standard Model are the gauge bosons, the force carriers of fundamental interactions: the photon of electrom ...
, which means, like the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
, it has a spin of 1. While massive spin-1 particles have three polarization states, massless gauge bosons like the gluon have only two polarization states because
gauge invariance In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie grou ...
requires the polarization to be transverse to the direction that the gluon is traveling. In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles a ...
, unbroken gauge invariance requires that gauge bosons have zero mass. Experiments limit the gluon's rest mass (if any) to less than a few MeV/''c''2. The gluon has negative intrinsic parity.


Counting gluons

Unlike the single
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
of QED or the three
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and ...
of the
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
, there are eight independent types of gluon in QCD. However, gluons are subject to the
color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of col ...
phenomena (of which they have combinations of color and anticolor).
Quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s carry three types of color charge; antiquarks carry three types of anticolor. Gluons may be thought of as carrying both color and anticolor. This gives nine ''possible'' combinations of color and anticolor in gluons. The following is a list of those combinations (and their schematic names): * red–antired red–antigreen red–antiblue * green–antired green–antigreen green–antiblue * blue–antired blue–antigreen blue–antiblue These are not the ''actual'' color states of observed gluons, but rather ''effective'' states. To correctly understand how they are combined, it is necessary to consider the mathematics of color charge in more detail.


Color singlet states

It is often said that the stable strongly interacting particles (such as the proton and the neutron, i.e.
hadrons In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
) observed in nature are "colorless", but more precisely they are in a "color singlet" state, which is mathematically analogous to a ''spin'' singlet state. Such states allow interaction with other color singlets, but not with other color states; because long-range gluon interactions do not exist, this illustrates that gluons in the singlet state do not exist either. The color singlet state is: :(r\bar+b\bar+g\bar)/\sqrt. In other words, if one could measure the color of the state, there would be equal probabilities of it being red–antired, blue–antiblue, or green–antigreen.


Eight colors

There are eight remaining independent color states, which correspond to the "eight types" or "eight colors" of gluons. Because states can be mixed together as discussed above, there are many ways of presenting these states, which are known as the "color octet". One commonly used list is: These are equivalent to the
Gell-Mann matrices The Gell-Mann matrices, developed by Murray Gell-Mann, are a set of eight linearly independent 3×3 traceless Hermitian matrices used in the study of the strong interaction in particle physics. They span the Lie algebra of the SU(3) group in ...
. The critical feature of these particular eight states is that they are
linearly independent In the theory of vector spaces, a set of vectors is said to be if there is a nontrivial linear combination of the vectors that equals the zero vector. If no such linear combination exists, then the vectors are said to be . These concepts a ...
, and also independent of the singlet state, hence 32 − 1 or 23. There is no way to add any combination of these states to produce any other, and it is also impossible to add them to make r, g, or b the forbidden
singlet state In quantum mechanics, a singlet state usually refers to a system in which all electrons are paired. The term 'singlet' originally meant a linked set of particles whose net angular momentum is zero, that is, whose overall spin quantum number s=0. A ...
. There are many other possible choices, but all are mathematically equivalent, at least equally complicated, and give the same physical results.


Group theory details

Technically, QCD is a
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie group ...
with
SU(3) In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special ...
gauge symmetry. Quarks are introduced as
spinor In geometry and physics, spinors are elements of a complex vector space that can be associated with Euclidean space. Like geometric vectors and more general tensors, spinors transform linearly when the Euclidean space is subjected to a sligh ...
s in ''N''f flavors, each in the
fundamental representation In representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defi ...
(triplet, denoted 3) of the color gauge group, SU(3). The gluons are vectors in the
adjoint representation In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is GL(n ...
(octets, denoted 8) of color SU(3). For a general gauge group, the number of force-carriers (like photons or gluons) is always equal to the dimension of the adjoint representation. For the simple case of SU(''N''), the dimension of this representation is . In terms of group theory, the assertion that there are no color singlet gluons is simply the statement that quantum chromodynamics has an SU(3) rather than a U(3) symmetry. There is no known ''a priori'' reason for one group to be preferred over the other, but as discussed above, the experimental evidence supports SU(3). If the group were U(3), the ninth (colorless singlet) gluon would behave like a "second photon" and not like the other eight gluons.


Confinement

Since gluons themselves carry color charge, they participate in strong interactions. These gluon–gluon interactions constrain color fields to string-like objects called " flux tubes", which exert constant force when stretched. Due to this force,
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s are confined within
composite particle This is a list of known and hypothesized particles. Elementary particles Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. They are the fundamental ob ...
s called
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
s. This effectively limits the range of the strong interaction to meters, roughly the size of a nucleon. Beyond a certain distance, the energy of the flux tube binding two quarks increases linearly. At a large enough distance, it becomes energetically more favorable to pull a quark–antiquark pair out of the vacuum rather than increase the length of the flux tube. Gluons also share this property of being confined within hadrons. One consequence is that gluons are not directly involved in the
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
s between hadrons. The force mediators for these are other hadrons called
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
s. Although in the normal phase of QCD single gluons may not travel freely, it is predicted that there exist hadrons that are formed entirely of gluons — called glueballs. There are also conjectures about other
exotic hadron Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just t ...
s in which real gluons (as opposed to virtual ones found in ordinary hadrons) would be primary constituents. Beyond the normal phase of QCD (at extreme temperatures and pressures),
quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a ...
forms. In such a plasma there are no hadrons; quarks and gluons become free particles.


Experimental observations

Quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s and gluons (colored) manifest themselves by fragmenting into more quarks and gluons, which in turn hadronize into normal (colorless) particles, correlated in jets. As revealed in 1978 summer conferences, the PLUTO detector at the electron-positron collider DORIS (
DESY The Deutsches Elektronen-Synchrotron (English ''German Electron Synchrotron''), commonly referred to by the abbreviation DESY, is a national research center in Germany. It operates particle accelerators used to investigate the structure of matt ...
) produced the first evidence that the hadronic decays of the very narrow resonance Υ(9.46) could be interpreted as three-jet event topologies produced by three gluons. Later, published analyses by the same experiment confirmed this interpretation and also the spin = 1 nature of the gluon (see also the recollection and PLUTO experiments). In summer 1979, at higher energies at the electron-positron collider
PETRA Petra ( ar, ٱلْبَتْرَاء, Al-Batrāʾ; grc, Πέτρα, "Rock", Nabataean: ), originally known to its inhabitants as Raqmu or Raqēmō, is an historic and archaeological city in southern Jordan. It is adjacent to the mountain of Jab ...
(DESY), again three-jet topologies were observed, now interpreted as q gluon
bremsstrahlung ''Bremsstrahlung'' (), from "to brake" and "radiation"; i.e., "braking radiation" or "deceleration radiation", is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typicall ...
, now clearly visible, by TASSO, MARK-J and PLUTO experiments (later in 1980 also by
JADE Jade is a mineral used as jewellery or for ornaments. It is typically green, although may be yellow or white. Jade can refer to either of two different silicate minerals: nephrite (a silicate of calcium and magnesium in the amphibole group ...
). The spin = 1 property of the gluon was confirmed in 1980 by TASSO and PLUTO experiments (see also the review). In 1991 a subsequent experiment at the LEP storage ring at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
again confirmed this result. The gluons play an important role in the elementary strong interactions between
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s and gluons, described by QCD and studied particularly at the electron-proton collider
HERA In ancient Greek religion, Hera (; grc-gre, Ἥρα, Hḗrā; grc, Ἥρη, Hḗrē, label=none in Ionic and Homeric Greek) is the goddess of marriage, women and family, and the protector of women during childbirth. In Greek mythology, she ...
at DESY. The number and momentum distribution of the gluons in the
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mas ...
(gluon density) have been measured by two experiments, H1 and
ZEUS Zeus or , , ; grc, Δῐός, ''Diós'', label= genitive Boeotian Aeolic and Laconian grc-dor, Δεύς, Deús ; grc, Δέος, ''Déos'', label= genitive el, Δίας, ''Días'' () is the sky and thunder god in ancient Greek relig ...
, in the years 1996–2007. The gluon contribution to the proton spin has been studied by the HERMES experiment at HERA. The gluon density in the proton (when behaving hadronically) also has been measured.
Color confinement In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions ...
is verified by the failure of free quark searches (searches of fractional charges). Quarks are normally produced in pairs (quark + antiquark) to compensate the quantum color and flavor numbers; however at
Fermilab Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been opera ...
single production of
top quark The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard ...
s has been shown. No glueball has been demonstrated.
Deconfinement In physics, deconfinement (in contrast to confinement) is a phase of matter in which certain particles are allowed to exist as free excitations, rather than only within bound states. Examples Various examples exist in particle physics where cert ...
was claimed in 2000 at CERN SPS in heavy-ion collisions, and it implies a new state of matter:
quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a ...
, less interactive than in the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
, almost as in a liquid. It was found at the
Relativistic Heavy Ion Collider The Relativistic Heavy Ion Collider (RHIC ) is the first and one of only two operating heavy- ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by ...
(RHIC) at Brookhaven in the years 2004–2010 by four contemporaneous experiments. A quark–gluon plasma state has been confirmed at the
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
Large Hadron Collider (LHC) by the three experiments
ALICE Alice may refer to: * Alice (name), most often a feminine given name, but also used as a surname Literature * Alice (''Alice's Adventures in Wonderland''), a character in books by Lewis Carroll * ''Alice'' series, children's and teen books by ...
,
ATLAS An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geographi ...
and
CMS CMS may refer to: Computing * Call management system * CMS-2 (programming language), used by the United States Navy * Code Morphing Software, a technology used by Transmeta * Collection management system for a museum collection * Color manag ...
in 2010.
Jefferson Lab Thomas Jefferson National Accelerator Facility (TJNAF), commonly called Jefferson Lab or JLab, is a US National Laboratory located in Newport News, Virginia. Its stated mission is "to provide forefront scientific facilities, opportunities and ...
's Continuous Electron Beam Accelerator Facility, in
Newport News, Virginia Newport News () is an independent city in the U.S. state of Virginia. At the 2020 census, the population was 186,247. Located in the Hampton Roads region, it is the 5th most populous city in Virginia and 140th most populous city in the Unit ...
, is one of 10 
Department of Energy A Ministry of Energy or Department of Energy is a government department in some countries that typically oversees the production of fuel and electricity; in the United States, however, it manages nuclear weapons development and conducts energy-relat ...
facilities doing research on gluons. The Virginia lab was competing with another facility –
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
, on Long Island, New York – for funds to build a new electron-ion collider. In December 2019 the US Department of Energy selected the
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
to host the electron-ion collider.


See also

*
Quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
*
Hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
*
Meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, ...
* Gauge boson *
Quark model In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the ...
* Quantum chromodynamics *
Quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a ...
*
Color confinement In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions ...
* Glueball * Gluon field *
Gluon field strength tensor In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks. The strong interaction is one of the fundamental interactions of nature, and the quantum fiel ...
*
Exotic hadron Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just t ...
s *
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces ( electromagnetic, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It ...
* Three-jet event *
Deep inelastic scattering Deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. It provided the first convincing evidence of the rea ...
* Quantum chromodynamics binding energy *
Special unitary group In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special ...
*
Hadronization Hadronization (or hadronisation) is the process of the formation of hadrons out of quarks and gluons. There are two main branches of hadronization: quark-gluon plasma (QGP) transformation and colour string decay into hadrons. The transformation o ...
*
Color charge Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD). The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of col ...
* Coupling constant


Footnotes


References


Further reading

*
Cambridge Handout 8 : Quantum Chromodynamics - Particle Physics


External resources


Big Think website, clear explanation of the QCD Octet
{{Authority control Bosons Elementary particles Gauge bosons Gluons Quantum chromodynamics Force carriers Subatomic particles with spin 1