HOME

TheInfoList



OR:

Gibberellins (GAs) are
plant hormone Plant hormone (or phytohormones) are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, from embryogenesis, the regulation of organ size, pat ...
s that regulate various developmental processes, including
stem Stem or STEM may refer to: Plant structures * Plant stem, a plant's aboveground axis, made of vascular tissue, off which leaves and flowers hang * Stipe (botany), a stalk to support some other structure * Stipe (mycology), the stem of a mushro ...
elongation,
germination Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, fe ...
,
dormancy Dormancy is a period in an organism's life cycle when growth, development, and (in animals) physical activity are temporarily stopped. This minimizes metabolic activity and therefore helps an organism to conserve energy. Dormancy tends to be c ...
,
flowering A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Angiospermae). The biological function of a flower is to facilitate reproduction, usually by providing a mechanism ...
,
flower A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Angiospermae). The biological function of a flower is to facilitate reproduction, usually by providing a mechanis ...
development, and leaf and fruit
senescence Senescence () or biological aging is the gradual deterioration of functional characteristics in living organisms. The word ''senescence'' can refer to either cellular senescence or to senescence of the whole organism. Organismal senescence invol ...
. GAs are one of the longest-known classes of plant hormone. It is thought that the
selective breeding Selective breeding (also called artificial selection) is the process by which humans use animal breeding and plant breeding to selectively develop particular phenotypic traits (characteristics) by choosing which typically animal or plant ...
(albeit unconscious) of crop strains that were deficient in GA synthesis was one of the key drivers of the "
green revolution The Green Revolution, also known as the Third Agricultural Revolution, was a period of technology transfer initiatives that saw greatly increased crop yields and agricultural production. These changes in agriculture began in developed countrie ...
" in the 1960s, a revolution that is credited to have saved over a billion lives worldwide.


History

The first inroads into the understanding of GAs were developments from the
plant pathology Plant pathology (also phytopathology) is the scientific study of diseases in plants caused by pathogens (infectious organisms) and environmental conditions (physiological factors). Organisms that cause infectious disease include fungi, ...
field, with studies on the ''
bakanae or bakanae disease (, , ), from the Japanese for "foolish seedling", is a disease that infects the rice plant. It is caused by the fungus ''Gibberella fujikuroi'', the metabolism of which produces a surplus of gibberellic acid. In the plant, this ...
'', or "foolish seedling" disease in
rice Rice is the seed of the grass species '' Oryza sativa'' (Asian rice) or less commonly ''Oryza glaberrima'' (African rice). The name wild rice is usually used for species of the genera '' Zizania'' and '' Porteresia'', both wild and domesticat ...
. Foolish seedling disease causes a strong elongation of rice stems and leaves and eventually causes them to topple over. In 1926, Japanese scientist Eiichi Kurosawa identified that foolish seedling disease was caused by the
fungus A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately fr ...
''
Gibberella fujikuroi ''Gibberella fujikuroi'' is a fungal plant pathogen. It causes ''bakanae'' disease in rice seedlings. Another name is foolish seedling disease. It gets that name because the seeds can be infected, leading to disparate outcomes for the plant. Th ...
.'' Later work at the University of Tokyo showed that a substance produced by this fungus triggered the symptoms of foolish seedling disease and they named this substance "gibberellin". The increased communication between Japan and the West following
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
enhanced the interest in gibberellin in the United Kingdom (UK) and the United States (US). Workers at
Imperial Chemical Industries Imperial Chemical Industries (ICI) was a British chemical company. It was, for much of its history, the largest manufacturer in Britain. It was formed by the merger of four leading British chemical companies in 1926. Its headquarters were at ...
in the UK and the Department of Agriculture in the US both independently isolated gibberellic acid (with the Americans originally referring to the chemical as "gibberellin-X", before adopting the British name–the chemical is known as gibberellin A3 or GA3 in Japan) Knowledge of gibberellins spread around the world as the potential for its use on various commercially important plants became more obvious. For example, research that started at the
University of California, Davis The University of California, Davis (UC Davis, UCD, or Davis) is a public land-grant research university near Davis, California. Named a Public Ivy, it is the northernmost of the ten campuses of the University of California system. The inst ...
in the mid-1960s led to its commercial use on Thompson seedless table grapes throughout California by 1962. A known gibberellin biosynthesis inhibitor is
paclobutrazol Paclobutrazol (PBZ) is the ISO common name for an organic compound that is used as a plant growth retardant and triazole fungicide. It is a known antagonist of the plant hormone gibberellin, acting by inhibiting gibberellin biosynthesis, reduc ...
(PBZ), which in turn inhibits growth and induces early fruitset as well as seedset. A chronic food shortage was feared during the rapid climb in world population in the 1960s. This was averted with the development of a high-yielding variety of rice. This variety of semi-dwarf rice is called
IR8 IR8 is a high-yielding semi-dwarf rice variety developed by the International Rice Research Institute (IRRI) in the early 1960s. It was the work by Peter Jennings (no relation to the U.S. journalist) and Henry Beachell. In November 1966, IR8 was i ...
, and it has a short height because of a mutation in the sd1 gene. Sd1 encodes GA20ox, so a mutant sd1 is expected to exhibit a short height that is consistent with GA deficiency.


Chemistry

All known gibberellins are
diterpenoid Diterpenes are a class of chemical compounds composed of four isoprene units, often with the molecular formula C20H32. They are biosynthesized by plants, animals and fungi via the HMG-CoA reductase pathway, with geranylgeranyl pyrophosphate being ...
acids that are synthesized by the terpenoid pathway in
plastid The plastid (Greek: πλαστός; plastós: formed, molded – plural plastids) is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. They are considered to be intracellular endosymbiotic cyan ...
s and then modified in the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
and
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
until they reach their biologically-active form. All gibberellins are derived via the ''ent''-gibberellane skeleton, but are synthesised via ''ent''-kaurene. The gibberellins are named GA1 through GAn in order of discovery. Gibberellic acid, which was the first gibberellin to be structurally characterized, is GA3. , there are 136 GAs identified from plants, fungi, and bacteria. Gibberellins are tetracyclic diterpene acids. There are two classes based on the presence of either 19 or 20 carbons. The 19-carbon gibberellins, such as gibberellic acid, have lost carbon 20 and, in place, possess a five-member
lactone Lactones are cyclic carboxylic esters, containing a 1-oxacycloalkan-2-one structure (), or analogues having unsaturation or heteroatoms replacing one or more carbon atoms of the ring. Lactones are formed by intramolecular esterification of the co ...
bridge that links carbons 4 and 10. The 19-carbon forms are, in general, the biologically active forms of gibberellins.
Hydroxylation In chemistry, hydroxylation can refer to: *(i) most commonly, hydroxylation describes a chemical process that introduces a hydroxyl group () into an organic compound. *(ii) the ''degree of hydroxylation'' refers to the number of OH groups in a ...
also has a great effect on the biological activity of the gibberellin. In general, the most biologically active compounds are dihydroxylated gibberellins, which possess hydroxyl groups on both carbon 3 and carbon 13. Gibberellic acid is a dihydroxylated gibberellin.


Bioactive GAs

The bioactive GAs are GA1, GA3, GA4, and GA7. There are three common structural traits between these GAs: hydroxyl group on C-3β, a carboxyl group on C-6, and a lactone between C-4 and C-10. The 3β-hydroxyl group can be exchanged for other functional groups at C-2 and/or C-3 positions. GA5 and GA6 are examples of bioactive GAs that do not have a hydroxyl group on C-3β. The presence of GA1 in various plant species suggests that it is a common bioactive GA. File:Gibberellin A1.svg, File:Gibberellic acid.svg, File:Ent-Gibberellane.svg, File:Ent-Kauren.svg,


Biological function

Gibberellins are involved in the natural process of breaking
dormancy Dormancy is a period in an organism's life cycle when growth, development, and (in animals) physical activity are temporarily stopped. This minimizes metabolic activity and therefore helps an organism to conserve energy. Dormancy tends to be c ...
and other aspects of
germination Germination is the process by which an organism grows from a seed or spore. The term is applied to the sprouting of a seedling from a seed of an angiosperm or gymnosperm, the growth of a sporeling from a spore, such as the spores of fungi, fe ...
. Before the photosynthetic apparatus develops sufficiently in the early stages of germination, the stored energy reserves of
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human die ...
nourish the seedling. Usually in germination, the breakdown of starch to
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
in the
endosperm The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid (meaning three chromosome sets per nucleus) in most species, which may be auxin-driven. It surrounds the embryo an ...
begins shortly after the seed is exposed to water. Gibberellins in the seed embryo are believed to signal starch
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysi ...
through inducing the synthesis of the enzyme α-
amylase An amylase () is an enzyme that catalyses the hydrolysis of starch (Latin ') into sugars. Amylase is present in the saliva of humans and some other mammals, where it begins the chemical process of digestion. Foods that contain large amounts of ...
in the aleurone cells. In the model for gibberellin-induced production of α-amylase, it is demonstrated that gibberellins (denoted by GA) produced in the scutellum diffuse to the aleurone cells, where they stimulate the secretion α-amylase. α-Amylase then hydrolyses starch, which is abundant in many seeds, into glucose that can be used in cellular respiration to produce energy for the seed embryo. Studies of this process have indicated gibberellins cause higher levels of transcription of the gene coding for the α-amylase enzyme, to stimulate the synthesis of α-amylase. Gibberellins are produced in greater mass when the plant is exposed to cold temperatures. They stimulate cell elongation, breaking and budding, seedless fruits, and seed germination. Gibberellins cause seed germination by breaking the seed's dormancy and acting as a chemical messenger. Its hormone binds to a receptor, and
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
activates the protein
calmodulin Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the bin ...
, and the complex binds to DNA, producing an enzyme to stimulate growth in the embryo.


Metabolism


Biosynthesis

GAs are usually synthesized from the
methylerythritol phosphate The non-mevalonate pathway—also appearing as the mevalonate-independent pathway and the 2-''C''-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathway—is an alternative metabolic pathway for the biosynthesis of the is ...
(MEP) pathway in higher plants. In this pathway, bioactive GA is produced from trans-geranylgeranyl diphosphate (GGDP). In the MEP pathway, three classes of enzymes are used to yield GA from GGDP: terpene syntheses (TPSs), cytochrome P450 monooxygenases (P450s), and 2-oxoglutarate–dependent dioxygenases (2ODDs). There are eight steps in the MEP pathway: # GGDP is converted to ent-copalyl diphosphate (ent-CPD) by ent-copalyl diphosphate synthase # ent-CDP is converted to ent-kaurene by ent-kaurene synthase # ent-kaurene is converted to ent-kaurenol by ent-kaurene oxidase (KO) # ent-kaurenol is converted to ent-kaurenal by KO # ent-kaurenal is converted to ent-kaurenoic acid by KO # ent-kaurenoic acid is converted to ent-7a-hydroxykaurenoic acid by ent-kaurene acid oxidase (KAO) # ent-7a-hydroxykaurenoic acid is converted to GA12-aldehyde by KAO # GA12-aldehyde is converted to GA12 by KAO. GA12 is processed to the bioactive GA4 by oxidations on C-20 and C-3, which is accomplished by 2 soluble ODDs: GA 20-oxidase and GA 3-oxidase. One or two genes encode the enzymes responsible for the first steps of GA biosynthesis in ''
Arabidopsis ''Arabidopsis'' (rockcress) is a genus in the family Brassicaceae. They are small flowering plants related to cabbage and mustard. This genus is of great interest since it contains thale cress (''Arabidopsis thaliana''), one of the model organ ...
'' and rice. The null alleles of the genes encoding CPS, KS, and KO result in GA-deficient ''Arabidopsis'' dwarves. Multigene families encode the 2ODDs that catalyze the formation of GA12 to bioactive GA4. AtGA3ox1 and AtGA3ox2, two of the four genes that encode GA3ox in ''Arabidopsis'', affect vegetative development. Environmental stimuli regulate AtGA3ox1 and AtGA3ox2 activity during seed germination. In ''Arabidopsis'', GA20ox overexpression leads to an increase in GA concentration.


Sites of biosynthesis

Most bioactive GAs are located in actively growing organs on plants. Both GA20ox and GA3ox genes (genes coding for GA 20-oxidase and GA 3-oxidase) and the SLENDER1 gene (a GA
signal transduction Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
gene) are found in growing organs on rice, which suggests bioactive GA synthesis occurs at their site of action in growing organs in plants. During flower development, the tapetum of anthers is believed to be a primary site of GA biosynthesis.


Differences between biosynthesis in fungi and lower plants

''Arabidopsis'', a plant, and ''
Gibberella fujikuroi ''Gibberella fujikuroi'' is a fungal plant pathogen. It causes ''bakanae'' disease in rice seedlings. Another name is foolish seedling disease. It gets that name because the seeds can be infected, leading to disparate outcomes for the plant. Th ...
'', a fungus, possess different GA pathways and enzymes. P450s in fungi perform functions analogous to the functions of KAOs in plants. The function of CPS and KS in plants is performed by a single enzyme, CPS/KS, in fungi. In fungi, the GA biosynthesis genes are found on one chromosome, but in plants, they are found randomly on multiple chromosomes. Plants produce low amount of GA3, therefore the GA3 is produced for industrial purposes by microorganisms. Industrially the gibberellic acid can be produced by submerged fermentation, but this process presents low yield with high production costs and hence higher sale value, nevertheless other alternative process to reduce costs of the GA3 production is solid-state fermentation (SSF) that allows the use of agro-industrial residues.


Catabolism

Several mechanisms for inactivating GAs have been identified. 2β-hydroxylation deactivates GA, and is catalyzed by GA2-oxidases (GA2oxs). Some GA2oxs use C19-GAs as substrates, and other GA2oxs use C20-GAs. Cytochrome P450 mono-oxygenase, encoded by elongated uppermost internode (eui), converts GAs into 16α,17-epoxides. Rice eui mutants amass bioactive GAs at high levels, which suggests cytochrome P450 mono-oxygenase is a main enzyme responsible for deactivation GA in rice. The Gamt1 and gamt2 genes encode enzymes that methylate the C-6 carboxyl group of GAs. In a gamt1 and gamt2 mutant, concentrations of GA is developing seeds is increased.


Homeostasis

Feedback and feedforward regulation maintains the levels of bioactive GAs in plants. Levels of AtGA20ox1 and AtGA3ox1 expression are increased in a GA deficient environment, and decreased after the addition of bioactive GAs, Conversely, expression of AtGA2ox1 and AtGA2ox2, GA deactivation genes, is increased with addition of GA.


Regulation


Regulation by other hormones

The auxin indole-3-acetic acid (IAA) regulates concentration of GA1 in elongating internodes in peas. Removal of IAA by removal of the apical bud, the auxin source, reduces the concentration of GA1, and reintroduction of IAA reverses these effects to increase the concentration of GA1. This phenomenon has also been observed in tobacco plants. Auxin increases GA 3-oxidation and decreases GA 2-oxidation in barley. Auxin also regulates GA biosynthesis during fruit development in peas. These discoveries in different plant species suggest the auxin regulation of GA metabolism may be a universal mechanism. Ethylene decreases the concentration of bioactive GAs.


Regulation by environmental factors

Recent evidence suggests fluctuations in GA concentration influence light-regulated seed germination,
photomorphogenesis In developmental biology, photomorphogenesis is light-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from photosynthesis where light is used as a source of energy. Phytochromes, ...
during de-etiolation, and
photoperiod Photoperiodism is the physiological reaction of organisms to the length of night or a dark period. It occurs in plants and animals. Plant photoperiodism can also be defined as the developmental responses of plants to the relative lengths of light a ...
regulation of stem elongation and flowering. Microarray analysis showed about one fourth cold-responsive genes are related to GA-regulated genes, which suggests GA influences response to cold temperatures. Plants reduce growth rate when exposed to stress. A relationship between GA levels and amount of stress experienced has been suggested in barley.


Role in seed development

Bioactive GAs and
abscisic acid Abscisic acid (ABA) is a plant hormone. ABA functions in many plant developmental processes, including seed and bud dormancy, the control of organ size and stomatal closure. It is especially important for plants in the response to environmental s ...
levels have an inverse relationship and regulate seed development and germination. Levels of FUS3, an ''Arabidopsis'' transcription factor, are upregulated by ABA and downregulated by GA, which suggests that there is a regulation loop that establishes the balance of GA and ABA.


Signalling mechanism


Receptor

In the early 1990s, there were several lines of evidence that suggested the existence of a GA receptor in
oat The oat (''Avena sativa''), sometimes called the common oat, is a species of cereal grain grown for its seed, which is known by the same name (usually in the plural, unlike other cereals and pseudocereals). While oats are suitable for human con ...
seeds that was located at the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
. However, despite intensive research, to date, no membrane-bound GA receptor has been isolated. This, along with the discovery of a soluble receptor, GA insensitive dwarf 1 (GID1) has led many to doubt that a membrane-bound receptor exists.GID1 was first identified in
rice Rice is the seed of the grass species '' Oryza sativa'' (Asian rice) or less commonly ''Oryza glaberrima'' (African rice). The name wild rice is usually used for species of the genera '' Zizania'' and '' Porteresia'', both wild and domesticat ...
and in ''Arabidopsis'' there are three orthologs of GID1, AtGID1a, b, and c. GID1s have a high affinity for bioactive GAs. GA binds to a specific binding pocket on GID1; the C3-hydroxyl on GA makes contact with tyrosine-31 in the GID1 binding pocket. GA binding to GID1 causes changes in GID1 structure, causing a 'lid' on GID1 to cover the GA binding pocket. The movement of this lid results in the exposure of a surface which enables the binding of GID1 to DELLA proteins.


DELLA proteins: Repression of a repressor

DELLA proteins, such as SLR1 in rice or
GAI Gai or GAI may refer to: People Given name or nickname * GAI (musician) (born 1987), Chinese hip-hop musician * Gai Assulin (born 1991), Israeli footballer * Gai Brodtmann (born 1963), Australian politician * Gai Eaton (1921–2010), Brit ...
and RGA in ''Arabidopsis'' are repressors of plant development. DELLAs inhibit seed germination, seed growth, flowering and GA reverses these effects. DELLA proteins are characterized by the presence of a DELLA motif (
aspartate Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the pro ...
-
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synt ...
-
leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- ...
-leucine-
alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side ...
or D-E-L-L-A in the single letter amino acid code). When GA binds to the GID1 receptor, it enhances the interaction between GID1 and DELLA proteins, forming a GA-GID1-DELLA complex. When in the GA-GID1-DELLA complex, it is thought that DELLA proteins undergo changes in structure that enable their binding to F-box proteins (SLY1 in ''Arabidopsis'' or GID2 in rice). F-box proteins
catalyse Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
the addition of
ubiquitin Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...
to their targets. The addition of ubiquitin to DELLA proteins promotes their degradation via the 26S-proteosome. The degradation of DELLA proteins releases cells from their repressive effects.


Targets of DELLA proteins


Transcription factors

The first targets of DELLA proteins identified were PHYTOCHROME INTERACTING FACTORs (PIFs). PIFs are
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The f ...
s that negatively regulate light signalling and are strong promoters of elongation growth. In the presence of GA, DELLAs are degraded and this then allows PIFs to promote elongation. It was later found that DELLAs repress a large number of other transcription factors, among which are positive regulators of
auxin Auxins (plural of auxin ) are a class of plant hormones (or plant-growth regulators) with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essenti ...
,
brassinosteroid Brassinosteroids (BRs or less commonly BS) are a class of polyhydroxysteroids that have been recognized as a sixth class of plant hormones and may have utility as an anticancer drug for endocrine-responsive cancers to induce apoptosis and inhibit ...
and
ethylene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene ...
signalling. DELLAs can repress transcription factors either by stopping their binding to DNA or by promoting their degradation.


Prefoldins and microtubule assembly

In addition to repressing transcription factors, DELLAs also bind to prefoldins (PFDs). PFDs are molecular chaperones, meaning they assist in the folding of other proteins. PFDs function in the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
but when DELLAs bind to PFDs, it restricts them to the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: * Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
. An important function of PFDs is to assist in the folding of
β-tubulin Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytosk ...
. As such, in the absence of GA (when there is a high level of DELLA proteins), PDF function is reduced and there is a lower cellular pool of β-tubulin. When GA is present the DELLAs are degraded, PDFs can move to the cytosol and assist in the folding of β-tubulin. β-tubulin is a vital component of the
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is co ...
(in the form of
microtubule Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27  nm and have an inner diameter between 1 ...
s). As such, GA allows for re-organisation of the cytoskeleton, and the elongation of cells. Microtubules are also required for the trafficking of membrane vesicles. Membrane vesicle trafficking is needed for the correct positioning of several hormone transporters. One of the most well characterized hormone transporters are PIN proteins, which are responsible for the movement of the hormone auxin between cells. In the absence of GA, DELLA proteins reduce the levels of microtubules and thereby inhibit membrane vesicle trafficking. This reduces the level of PIN proteins at the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
, and the level of auxin in the cell. GA reverses this process and allows for PIN protein trafficking to the cell membrane to enhance the level of auxin in the cell.


References


External links

* {{Authority control Plant hormones Agronomy Diterpenes Aging-related substances in plants